The Battle for Wesnoth  1.15.0-dev
lcode.cpp
Go to the documentation of this file.
1 /*
2 ** $Id: lcode.c,v 2.112.1.1 2017/04/19 17:20:42 roberto Exp $
3 ** Code generator for Lua
4 ** See Copyright Notice in lua.h
5 */
6 
7 #define lcode_c
8 #define LUA_CORE
9 
10 #include "lprefix.h"
11 
12 
13 #include <math.h>
14 #include <stdlib.h>
15 
16 #include "lua.h"
17 
18 #include "lcode.h"
19 #include "ldebug.h"
20 #include "ldo.h"
21 #include "lgc.h"
22 #include "llex.h"
23 #include "lmem.h"
24 #include "lobject.h"
25 #include "lopcodes.h"
26 #include "lparser.h"
27 #include "lstring.h"
28 #include "ltable.h"
29 #include "lvm.h"
30 
31 
32 /* Maximum number of registers in a Lua function (must fit in 8 bits) */
33 #define MAXREGS 255
34 
35 
36 #define hasjumps(e) ((e)->t != (e)->f)
37 
38 
39 /*
40 ** If expression is a numeric constant, fills 'v' with its value
41 ** and returns 1. Otherwise, returns 0.
42 */
43 static int tonumeral(const expdesc *e, TValue *v) {
44  if (hasjumps(e))
45  return 0; /* not a numeral */
46  switch (e->k) {
47  case VKINT:
48  if (v) setivalue(v, e->u.ival);
49  return 1;
50  case VKFLT:
51  if (v) setfltvalue(v, e->u.nval);
52  return 1;
53  default: return 0;
54  }
55 }
56 
57 
58 /*
59 ** Create a OP_LOADNIL instruction, but try to optimize: if the previous
60 ** instruction is also OP_LOADNIL and ranges are compatible, adjust
61 ** range of previous instruction instead of emitting a new one. (For
62 ** instance, 'local a; local b' will generate a single opcode.)
63 */
64 void luaK_nil (FuncState *fs, int from, int n) {
65  Instruction *previous;
66  int l = from + n - 1; /* last register to set nil */
67  if (fs->pc > fs->lasttarget) { /* no jumps to current position? */
68  previous = &fs->f->code[fs->pc-1];
69  if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */
70  int pfrom = GETARG_A(*previous); /* get previous range */
71  int pl = pfrom + GETARG_B(*previous);
72  if ((pfrom <= from && from <= pl + 1) ||
73  (from <= pfrom && pfrom <= l + 1)) { /* can connect both? */
74  if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */
75  if (pl > l) l = pl; /* l = max(l, pl) */
76  SETARG_A(*previous, from);
77  SETARG_B(*previous, l - from);
78  return;
79  }
80  } /* else go through */
81  }
82  luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */
83 }
84 
85 
86 /*
87 ** Gets the destination address of a jump instruction. Used to traverse
88 ** a list of jumps.
89 */
90 static int getjump (FuncState *fs, int pc) {
91  int offset = GETARG_sBx(fs->f->code[pc]);
92  if (offset == NO_JUMP) /* point to itself represents end of list */
93  return NO_JUMP; /* end of list */
94  else
95  return (pc+1)+offset; /* turn offset into absolute position */
96 }
97 
98 
99 /*
100 ** Fix jump instruction at position 'pc' to jump to 'dest'.
101 ** (Jump addresses are relative in Lua)
102 */
103 static void fixjump (FuncState *fs, int pc, int dest) {
104  Instruction *jmp = &fs->f->code[pc];
105  int offset = dest - (pc + 1);
106  lua_assert(dest != NO_JUMP);
107  if (abs(offset) > MAXARG_sBx)
108  luaX_syntaxerror(fs->ls, "control structure too long");
109  SETARG_sBx(*jmp, offset);
110 }
111 
112 
113 /*
114 ** Concatenate jump-list 'l2' into jump-list 'l1'
115 */
116 void luaK_concat (FuncState *fs, int *l1, int l2) {
117  if (l2 == NO_JUMP) return; /* nothing to concatenate? */
118  else if (*l1 == NO_JUMP) /* no original list? */
119  *l1 = l2; /* 'l1' points to 'l2' */
120  else {
121  int list = *l1;
122  int next;
123  while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */
124  list = next;
125  fixjump(fs, list, l2); /* last element links to 'l2' */
126  }
127 }
128 
129 
130 /*
131 ** Create a jump instruction and return its position, so its destination
132 ** can be fixed later (with 'fixjump'). If there are jumps to
133 ** this position (kept in 'jpc'), link them all together so that
134 ** 'patchlistaux' will fix all them directly to the final destination.
135 */
137  int jpc = fs->jpc; /* save list of jumps to here */
138  int j;
139  fs->jpc = NO_JUMP; /* no more jumps to here */
140  j = luaK_codeAsBx(fs, OP_JMP, 0, NO_JUMP);
141  luaK_concat(fs, &j, jpc); /* keep them on hold */
142  return j;
143 }
144 
145 
146 /*
147 ** Code a 'return' instruction
148 */
149 void luaK_ret (FuncState *fs, int first, int nret) {
150  luaK_codeABC(fs, OP_RETURN, first, nret+1, 0);
151 }
152 
153 
154 /*
155 ** Code a "conditional jump", that is, a test or comparison opcode
156 ** followed by a jump. Return jump position.
157 */
158 static int condjump (FuncState *fs, OpCode op, int A, int B, int C) {
159  luaK_codeABC(fs, op, A, B, C);
160  return luaK_jump(fs);
161 }
162 
163 
164 /*
165 ** returns current 'pc' and marks it as a jump target (to avoid wrong
166 ** optimizations with consecutive instructions not in the same basic block).
167 */
169  fs->lasttarget = fs->pc;
170  return fs->pc;
171 }
172 
173 
174 /*
175 ** Returns the position of the instruction "controlling" a given
176 ** jump (that is, its condition), or the jump itself if it is
177 ** unconditional.
178 */
180  Instruction *pi = &fs->f->code[pc];
181  if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
182  return pi-1;
183  else
184  return pi;
185 }
186 
187 
188 /*
189 ** Patch destination register for a TESTSET instruction.
190 ** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
191 ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
192 ** register. Otherwise, change instruction to a simple 'TEST' (produces
193 ** no register value)
194 */
195 static int patchtestreg (FuncState *fs, int node, int reg) {
196  Instruction *i = getjumpcontrol(fs, node);
197  if (GET_OPCODE(*i) != OP_TESTSET)
198  return 0; /* cannot patch other instructions */
199  if (reg != NO_REG && reg != GETARG_B(*i))
200  SETARG_A(*i, reg);
201  else {
202  /* no register to put value or register already has the value;
203  change instruction to simple test */
204  *i = CREATE_ABC(OP_TEST, GETARG_B(*i), 0, GETARG_C(*i));
205  }
206  return 1;
207 }
208 
209 
210 /*
211 ** Traverse a list of tests ensuring no one produces a value
212 */
213 static void removevalues (FuncState *fs, int list) {
214  for (; list != NO_JUMP; list = getjump(fs, list))
215  patchtestreg(fs, list, NO_REG);
216 }
217 
218 
219 /*
220 ** Traverse a list of tests, patching their destination address and
221 ** registers: tests producing values jump to 'vtarget' (and put their
222 ** values in 'reg'), other tests jump to 'dtarget'.
223 */
224 static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
225  int dtarget) {
226  while (list != NO_JUMP) {
227  int next = getjump(fs, list);
228  if (patchtestreg(fs, list, reg))
229  fixjump(fs, list, vtarget);
230  else
231  fixjump(fs, list, dtarget); /* jump to default target */
232  list = next;
233  }
234 }
235 
236 
237 /*
238 ** Ensure all pending jumps to current position are fixed (jumping
239 ** to current position with no values) and reset list of pending
240 ** jumps
241 */
242 static void dischargejpc (FuncState *fs) {
243  patchlistaux(fs, fs->jpc, fs->pc, NO_REG, fs->pc);
244  fs->jpc = NO_JUMP;
245 }
246 
247 
248 /*
249 ** Add elements in 'list' to list of pending jumps to "here"
250 ** (current position)
251 */
252 void luaK_patchtohere (FuncState *fs, int list) {
253  luaK_getlabel(fs); /* mark "here" as a jump target */
254  luaK_concat(fs, &fs->jpc, list);
255 }
256 
257 
258 /*
259 ** Path all jumps in 'list' to jump to 'target'.
260 ** (The assert means that we cannot fix a jump to a forward address
261 ** because we only know addresses once code is generated.)
262 */
263 void luaK_patchlist (FuncState *fs, int list, int target) {
264  if (target == fs->pc) /* 'target' is current position? */
265  luaK_patchtohere(fs, list); /* add list to pending jumps */
266  else {
267  lua_assert(target < fs->pc);
268  patchlistaux(fs, list, target, NO_REG, target);
269  }
270 }
271 
272 
273 /*
274 ** Path all jumps in 'list' to close upvalues up to given 'level'
275 ** (The assertion checks that jumps either were closing nothing
276 ** or were closing higher levels, from inner blocks.)
277 */
278 void luaK_patchclose (FuncState *fs, int list, int level) {
279  level++; /* argument is +1 to reserve 0 as non-op */
280  for (; list != NO_JUMP; list = getjump(fs, list)) {
281  lua_assert(GET_OPCODE(fs->f->code[list]) == OP_JMP &&
282  (GETARG_A(fs->f->code[list]) == 0 ||
283  GETARG_A(fs->f->code[list]) >= level));
284  SETARG_A(fs->f->code[list], level);
285  }
286 }
287 
288 
289 /*
290 ** Emit instruction 'i', checking for array sizes and saving also its
291 ** line information. Return 'i' position.
292 */
294  Proto *f = fs->f;
295  dischargejpc(fs); /* 'pc' will change */
296  /* put new instruction in code array */
297  luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
298  MAX_INT, "opcodes");
299  f->code[fs->pc] = i;
300  /* save corresponding line information */
301  luaM_growvector(fs->ls->L, f->lineinfo, fs->pc, f->sizelineinfo, int,
302  MAX_INT, "opcodes");
303  f->lineinfo[fs->pc] = fs->ls->lastline;
304  return fs->pc++;
305 }
306 
307 
308 /*
309 ** Format and emit an 'iABC' instruction. (Assertions check consistency
310 ** of parameters versus opcode.)
311 */
312 int luaK_codeABC (FuncState *fs, OpCode o, int a, int b, int c) {
313  lua_assert(getOpMode(o) == iABC);
314  lua_assert(getBMode(o) != OpArgN || b == 0);
315  lua_assert(getCMode(o) != OpArgN || c == 0);
316  lua_assert(a <= MAXARG_A && b <= MAXARG_B && c <= MAXARG_C);
317  return luaK_code(fs, CREATE_ABC(o, a, b, c));
318 }
319 
320 
321 /*
322 ** Format and emit an 'iABx' instruction.
323 */
324 int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
325  lua_assert(getOpMode(o) == iABx || getOpMode(o) == iAsBx);
326  lua_assert(getCMode(o) == OpArgN);
327  lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx);
328  return luaK_code(fs, CREATE_ABx(o, a, bc));
329 }
330 
331 
332 /*
333 ** Emit an "extra argument" instruction (format 'iAx')
334 */
335 static int codeextraarg (FuncState *fs, int a) {
336  lua_assert(a <= MAXARG_Ax);
337  return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a));
338 }
339 
340 
341 /*
342 ** Emit a "load constant" instruction, using either 'OP_LOADK'
343 ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
344 ** instruction with "extra argument".
345 */
346 int luaK_codek (FuncState *fs, int reg, int k) {
347  if (k <= MAXARG_Bx)
348  return luaK_codeABx(fs, OP_LOADK, reg, k);
349  else {
350  int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
351  codeextraarg(fs, k);
352  return p;
353  }
354 }
355 
356 
357 /*
358 ** Check register-stack level, keeping track of its maximum size
359 ** in field 'maxstacksize'
360 */
362  int newstack = fs->freereg + n;
363  if (newstack > fs->f->maxstacksize) {
364  if (newstack >= MAXREGS)
365  luaX_syntaxerror(fs->ls,
366  "function or expression needs too many registers");
367  fs->f->maxstacksize = cast_byte(newstack);
368  }
369 }
370 
371 
372 /*
373 ** Reserve 'n' registers in register stack
374 */
376  luaK_checkstack(fs, n);
377  fs->freereg += n;
378 }
379 
380 
381 /*
382 ** Free register 'reg', if it is neither a constant index nor
383 ** a local variable.
384 )
385 */
386 static void freereg (FuncState *fs, int reg) {
387  if (!ISK(reg) && reg >= fs->nactvar) {
388  fs->freereg--;
389  lua_assert(reg == fs->freereg);
390  }
391 }
392 
393 
394 /*
395 ** Free register used by expression 'e' (if any)
396 */
397 static void freeexp (FuncState *fs, expdesc *e) {
398  if (e->k == VNONRELOC)
399  freereg(fs, e->u.info);
400 }
401 
402 
403 /*
404 ** Free registers used by expressions 'e1' and 'e2' (if any) in proper
405 ** order.
406 */
407 static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
408  int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
409  int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
410  if (r1 > r2) {
411  freereg(fs, r1);
412  freereg(fs, r2);
413  }
414  else {
415  freereg(fs, r2);
416  freereg(fs, r1);
417  }
418 }
419 
420 
421 /*
422 ** Add constant 'v' to prototype's list of constants (field 'k').
423 ** Use scanner's table to cache position of constants in constant list
424 ** and try to reuse constants. Because some values should not be used
425 ** as keys (nil cannot be a key, integer keys can collapse with float
426 ** keys), the caller must provide a useful 'key' for indexing the cache.
427 */
428 static int addk (FuncState *fs, TValue *key, TValue *v) {
429  lua_State *L = fs->ls->L;
430  Proto *f = fs->f;
431  TValue *idx = luaH_set(L, fs->ls->h, key); /* index scanner table */
432  int k, oldsize;
433  if (ttisinteger(idx)) { /* is there an index there? */
434  k = cast_int(ivalue(idx));
435  /* correct value? (warning: must distinguish floats from integers!) */
436  if (k < fs->nk && ttype(&f->k[k]) == ttype(v) &&
437  luaV_rawequalobj(&f->k[k], v))
438  return k; /* reuse index */
439  }
440  /* constant not found; create a new entry */
441  oldsize = f->sizek;
442  k = fs->nk;
443  /* numerical value does not need GC barrier;
444  table has no metatable, so it does not need to invalidate cache */
445  setivalue(idx, k);
446  luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
447  while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
448  setobj(L, &f->k[k], v);
449  fs->nk++;
450  luaC_barrier(L, f, v);
451  return k;
452 }
453 
454 
455 /*
456 ** Add a string to list of constants and return its index.
457 */
459  TValue o;
460  setsvalue(fs->ls->L, &o, s);
461  return addk(fs, &o, &o); /* use string itself as key */
462 }
463 
464 
465 /*
466 ** Add an integer to list of constants and return its index.
467 ** Integers use userdata as keys to avoid collision with floats with
468 ** same value; conversion to 'void*' is used only for hashing, so there
469 ** are no "precision" problems.
470 */
472  TValue k, o;
473  setpvalue(&k, cast(void*, cast(size_t, n)));
474  setivalue(&o, n);
475  return addk(fs, &k, &o);
476 }
477 
478 /*
479 ** Add a float to list of constants and return its index.
480 */
482  TValue o;
483  setfltvalue(&o, r);
484  return addk(fs, &o, &o); /* use number itself as key */
485 }
486 
487 
488 /*
489 ** Add a boolean to list of constants and return its index.
490 */
491 static int boolK (FuncState *fs, int b) {
492  TValue o;
493  setbvalue(&o, b);
494  return addk(fs, &o, &o); /* use boolean itself as key */
495 }
496 
497 
498 /*
499 ** Add nil to list of constants and return its index.
500 */
501 static int nilK (FuncState *fs) {
502  TValue k, v;
503  setnilvalue(&v);
504  /* cannot use nil as key; instead use table itself to represent nil */
505  sethvalue(fs->ls->L, &k, fs->ls->h);
506  return addk(fs, &k, &v);
507 }
508 
509 
510 /*
511 ** Fix an expression to return the number of results 'nresults'.
512 ** Either 'e' is a multi-ret expression (function call or vararg)
513 ** or 'nresults' is LUA_MULTRET (as any expression can satisfy that).
514 */
515 void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
516  if (e->k == VCALL) { /* expression is an open function call? */
517  SETARG_C(getinstruction(fs, e), nresults + 1);
518  }
519  else if (e->k == VVARARG) {
520  Instruction *pc = &getinstruction(fs, e);
521  SETARG_B(*pc, nresults + 1);
522  SETARG_A(*pc, fs->freereg);
523  luaK_reserveregs(fs, 1);
524  }
525  else lua_assert(nresults == LUA_MULTRET);
526 }
527 
528 
529 /*
530 ** Fix an expression to return one result.
531 ** If expression is not a multi-ret expression (function call or
532 ** vararg), it already returns one result, so nothing needs to be done.
533 ** Function calls become VNONRELOC expressions (as its result comes
534 ** fixed in the base register of the call), while vararg expressions
535 ** become VRELOCABLE (as OP_VARARG puts its results where it wants).
536 ** (Calls are created returning one result, so that does not need
537 ** to be fixed.)
538 */
540  if (e->k == VCALL) { /* expression is an open function call? */
541  /* already returns 1 value */
542  lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
543  e->k = VNONRELOC; /* result has fixed position */
544  e->u.info = GETARG_A(getinstruction(fs, e));
545  }
546  else if (e->k == VVARARG) {
547  SETARG_B(getinstruction(fs, e), 2);
548  e->k = VRELOCABLE; /* can relocate its simple result */
549  }
550 }
551 
552 
553 /*
554 ** Ensure that expression 'e' is not a variable.
555 */
557  switch (e->k) {
558  case VLOCAL: { /* already in a register */
559  e->k = VNONRELOC; /* becomes a non-relocatable value */
560  break;
561  }
562  case VUPVAL: { /* move value to some (pending) register */
563  e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
564  e->k = VRELOCABLE;
565  break;
566  }
567  case VINDEXED: {
568  OpCode op;
569  freereg(fs, e->u.ind.idx);
570  if (e->u.ind.vt == VLOCAL) { /* is 't' in a register? */
571  freereg(fs, e->u.ind.t);
572  op = OP_GETTABLE;
573  }
574  else {
575  lua_assert(e->u.ind.vt == VUPVAL);
576  op = OP_GETTABUP; /* 't' is in an upvalue */
577  }
578  e->u.info = luaK_codeABC(fs, op, 0, e->u.ind.t, e->u.ind.idx);
579  e->k = VRELOCABLE;
580  break;
581  }
582  case VVARARG: case VCALL: {
583  luaK_setoneret(fs, e);
584  break;
585  }
586  default: break; /* there is one value available (somewhere) */
587  }
588 }
589 
590 
591 /*
592 ** Ensures expression value is in register 'reg' (and therefore
593 ** 'e' will become a non-relocatable expression).
594 */
595 static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
596  luaK_dischargevars(fs, e);
597  switch (e->k) {
598  case VNIL: {
599  luaK_nil(fs, reg, 1);
600  break;
601  }
602  case VFALSE: case VTRUE: {
603  luaK_codeABC(fs, OP_LOADBOOL, reg, e->k == VTRUE, 0);
604  break;
605  }
606  case VK: {
607  luaK_codek(fs, reg, e->u.info);
608  break;
609  }
610  case VKFLT: {
611  luaK_codek(fs, reg, luaK_numberK(fs, e->u.nval));
612  break;
613  }
614  case VKINT: {
615  luaK_codek(fs, reg, luaK_intK(fs, e->u.ival));
616  break;
617  }
618  case VRELOCABLE: {
619  Instruction *pc = &getinstruction(fs, e);
620  SETARG_A(*pc, reg); /* instruction will put result in 'reg' */
621  break;
622  }
623  case VNONRELOC: {
624  if (reg != e->u.info)
625  luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
626  break;
627  }
628  default: {
629  lua_assert(e->k == VJMP);
630  return; /* nothing to do... */
631  }
632  }
633  e->u.info = reg;
634  e->k = VNONRELOC;
635 }
636 
637 
638 /*
639 ** Ensures expression value is in any register.
640 */
642  if (e->k != VNONRELOC) { /* no fixed register yet? */
643  luaK_reserveregs(fs, 1); /* get a register */
644  discharge2reg(fs, e, fs->freereg-1); /* put value there */
645  }
646 }
647 
648 
649 static int code_loadbool (FuncState *fs, int A, int b, int jump) {
650  luaK_getlabel(fs); /* those instructions may be jump targets */
651  return luaK_codeABC(fs, OP_LOADBOOL, A, b, jump);
652 }
653 
654 
655 /*
656 ** check whether list has any jump that do not produce a value
657 ** or produce an inverted value
658 */
659 static int need_value (FuncState *fs, int list) {
660  for (; list != NO_JUMP; list = getjump(fs, list)) {
661  Instruction i = *getjumpcontrol(fs, list);
662  if (GET_OPCODE(i) != OP_TESTSET) return 1;
663  }
664  return 0; /* not found */
665 }
666 
667 
668 /*
669 ** Ensures final expression result (including results from its jump
670 ** lists) is in register 'reg'.
671 ** If expression has jumps, need to patch these jumps either to
672 ** its final position or to "load" instructions (for those tests
673 ** that do not produce values).
674 */
675 static void exp2reg (FuncState *fs, expdesc *e, int reg) {
676  discharge2reg(fs, e, reg);
677  if (e->k == VJMP) /* expression itself is a test? */
678  luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */
679  if (hasjumps(e)) {
680  int final; /* position after whole expression */
681  int p_f = NO_JUMP; /* position of an eventual LOAD false */
682  int p_t = NO_JUMP; /* position of an eventual LOAD true */
683  if (need_value(fs, e->t) || need_value(fs, e->f)) {
684  int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
685  p_f = code_loadbool(fs, reg, 0, 1);
686  p_t = code_loadbool(fs, reg, 1, 0);
687  luaK_patchtohere(fs, fj);
688  }
689  final = luaK_getlabel(fs);
690  patchlistaux(fs, e->f, final, reg, p_f);
691  patchlistaux(fs, e->t, final, reg, p_t);
692  }
693  e->f = e->t = NO_JUMP;
694  e->u.info = reg;
695  e->k = VNONRELOC;
696 }
697 
698 
699 /*
700 ** Ensures final expression result (including results from its jump
701 ** lists) is in next available register.
702 */
704  luaK_dischargevars(fs, e);
705  freeexp(fs, e);
706  luaK_reserveregs(fs, 1);
707  exp2reg(fs, e, fs->freereg - 1);
708 }
709 
710 
711 /*
712 ** Ensures final expression result (including results from its jump
713 ** lists) is in some (any) register and return that register.
714 */
716  luaK_dischargevars(fs, e);
717  if (e->k == VNONRELOC) { /* expression already has a register? */
718  if (!hasjumps(e)) /* no jumps? */
719  return e->u.info; /* result is already in a register */
720  if (e->u.info >= fs->nactvar) { /* reg. is not a local? */
721  exp2reg(fs, e, e->u.info); /* put final result in it */
722  return e->u.info;
723  }
724  }
725  luaK_exp2nextreg(fs, e); /* otherwise, use next available register */
726  return e->u.info;
727 }
728 
729 
730 /*
731 ** Ensures final expression result is either in a register or in an
732 ** upvalue.
733 */
735  if (e->k != VUPVAL || hasjumps(e))
736  luaK_exp2anyreg(fs, e);
737 }
738 
739 
740 /*
741 ** Ensures final expression result is either in a register or it is
742 ** a constant.
743 */
745  if (hasjumps(e))
746  luaK_exp2anyreg(fs, e);
747  else
748  luaK_dischargevars(fs, e);
749 }
750 
751 
752 /*
753 ** Ensures final expression result is in a valid R/K index
754 ** (that is, it is either in a register or in 'k' with an index
755 ** in the range of R/K indices).
756 ** Returns R/K index.
757 */
759  luaK_exp2val(fs, e);
760  switch (e->k) { /* move constants to 'k' */
761  case VTRUE: e->u.info = boolK(fs, 1); goto vk;
762  case VFALSE: e->u.info = boolK(fs, 0); goto vk;
763  case VNIL: e->u.info = nilK(fs); goto vk;
764  case VKINT: e->u.info = luaK_intK(fs, e->u.ival); goto vk;
765  case VKFLT: e->u.info = luaK_numberK(fs, e->u.nval); goto vk;
766  case VK:
767  vk:
768  e->k = VK;
769  if (e->u.info <= MAXINDEXRK) /* constant fits in 'argC'? */
770  return RKASK(e->u.info);
771  else break;
772  default: break;
773  }
774  /* not a constant in the right range: put it in a register */
775  return luaK_exp2anyreg(fs, e);
776 }
777 
778 
779 /*
780 ** Generate code to store result of expression 'ex' into variable 'var'.
781 */
783  switch (var->k) {
784  case VLOCAL: {
785  freeexp(fs, ex);
786  exp2reg(fs, ex, var->u.info); /* compute 'ex' into proper place */
787  return;
788  }
789  case VUPVAL: {
790  int e = luaK_exp2anyreg(fs, ex);
791  luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
792  break;
793  }
794  case VINDEXED: {
795  OpCode op = (var->u.ind.vt == VLOCAL) ? OP_SETTABLE : OP_SETTABUP;
796  int e = luaK_exp2RK(fs, ex);
797  luaK_codeABC(fs, op, var->u.ind.t, var->u.ind.idx, e);
798  break;
799  }
800  default: lua_assert(0); /* invalid var kind to store */
801  }
802  freeexp(fs, ex);
803 }
804 
805 
806 /*
807 ** Emit SELF instruction (convert expression 'e' into 'e:key(e,').
808 */
810  int ereg;
811  luaK_exp2anyreg(fs, e);
812  ereg = e->u.info; /* register where 'e' was placed */
813  freeexp(fs, e);
814  e->u.info = fs->freereg; /* base register for op_self */
815  e->k = VNONRELOC; /* self expression has a fixed register */
816  luaK_reserveregs(fs, 2); /* function and 'self' produced by op_self */
817  luaK_codeABC(fs, OP_SELF, e->u.info, ereg, luaK_exp2RK(fs, key));
818  freeexp(fs, key);
819 }
820 
821 
822 /*
823 ** Negate condition 'e' (where 'e' is a comparison).
824 */
826  Instruction *pc = getjumpcontrol(fs, e->u.info);
828  GET_OPCODE(*pc) != OP_TEST);
829  SETARG_A(*pc, !(GETARG_A(*pc)));
830 }
831 
832 
833 /*
834 ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
835 ** is true, code will jump if 'e' is true.) Return jump position.
836 ** Optimize when 'e' is 'not' something, inverting the condition
837 ** and removing the 'not'.
838 */
839 static int jumponcond (FuncState *fs, expdesc *e, int cond) {
840  if (e->k == VRELOCABLE) {
841  Instruction ie = getinstruction(fs, e);
842  if (GET_OPCODE(ie) == OP_NOT) {
843  fs->pc--; /* remove previous OP_NOT */
844  return condjump(fs, OP_TEST, GETARG_B(ie), 0, !cond);
845  }
846  /* else go through */
847  }
848  discharge2anyreg(fs, e);
849  freeexp(fs, e);
850  return condjump(fs, OP_TESTSET, NO_REG, e->u.info, cond);
851 }
852 
853 
854 /*
855 ** Emit code to go through if 'e' is true, jump otherwise.
856 */
858  int pc; /* pc of new jump */
859  luaK_dischargevars(fs, e);
860  switch (e->k) {
861  case VJMP: { /* condition? */
862  negatecondition(fs, e); /* jump when it is false */
863  pc = e->u.info; /* save jump position */
864  break;
865  }
866  case VK: case VKFLT: case VKINT: case VTRUE: {
867  pc = NO_JUMP; /* always true; do nothing */
868  break;
869  }
870  default: {
871  pc = jumponcond(fs, e, 0); /* jump when false */
872  break;
873  }
874  }
875  luaK_concat(fs, &e->f, pc); /* insert new jump in false list */
876  luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */
877  e->t = NO_JUMP;
878 }
879 
880 
881 /*
882 ** Emit code to go through if 'e' is false, jump otherwise.
883 */
885  int pc; /* pc of new jump */
886  luaK_dischargevars(fs, e);
887  switch (e->k) {
888  case VJMP: {
889  pc = e->u.info; /* already jump if true */
890  break;
891  }
892  case VNIL: case VFALSE: {
893  pc = NO_JUMP; /* always false; do nothing */
894  break;
895  }
896  default: {
897  pc = jumponcond(fs, e, 1); /* jump if true */
898  break;
899  }
900  }
901  luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */
902  luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */
903  e->f = NO_JUMP;
904 }
905 
906 
907 /*
908 ** Code 'not e', doing constant folding.
909 */
910 static void codenot (FuncState *fs, expdesc *e) {
911  luaK_dischargevars(fs, e);
912  switch (e->k) {
913  case VNIL: case VFALSE: {
914  e->k = VTRUE; /* true == not nil == not false */
915  break;
916  }
917  case VK: case VKFLT: case VKINT: case VTRUE: {
918  e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */
919  break;
920  }
921  case VJMP: {
922  negatecondition(fs, e);
923  break;
924  }
925  case VRELOCABLE:
926  case VNONRELOC: {
927  discharge2anyreg(fs, e);
928  freeexp(fs, e);
929  e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
930  e->k = VRELOCABLE;
931  break;
932  }
933  default: lua_assert(0); /* cannot happen */
934  }
935  /* interchange true and false lists */
936  { int temp = e->f; e->f = e->t; e->t = temp; }
937  removevalues(fs, e->f); /* values are useless when negated */
938  removevalues(fs, e->t);
939 }
940 
941 
942 /*
943 ** Create expression 't[k]'. 't' must have its final result already in a
944 ** register or upvalue.
945 */
947  lua_assert(!hasjumps(t) && (vkisinreg(t->k) || t->k == VUPVAL));
948  t->u.ind.t = t->u.info; /* register or upvalue index */
949  t->u.ind.idx = luaK_exp2RK(fs, k); /* R/K index for key */
950  t->u.ind.vt = (t->k == VUPVAL) ? VUPVAL : VLOCAL;
951  t->k = VINDEXED;
952 }
953 
954 
955 /*
956 ** Return false if folding can raise an error.
957 ** Bitwise operations need operands convertible to integers; division
958 ** operations cannot have 0 as divisor.
959 */
960 static int validop (int op, TValue *v1, TValue *v2) {
961  switch (op) {
962  case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
963  case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */
964  lua_Integer i;
965  return (tointeger(v1, &i) && tointeger(v2, &i));
966  }
967  case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */
968  return (nvalue(v2) != 0);
969  default: return 1; /* everything else is valid */
970  }
971 }
972 
973 
974 /*
975 ** Try to "constant-fold" an operation; return 1 iff successful.
976 ** (In this case, 'e1' has the final result.)
977 */
978 static int constfolding (FuncState *fs, int op, expdesc *e1,
979  const expdesc *e2) {
980  TValue v1, v2, res;
981  if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
982  return 0; /* non-numeric operands or not safe to fold */
983  luaO_arith(fs->ls->L, op, &v1, &v2, &res); /* does operation */
984  if (ttisinteger(&res)) {
985  e1->k = VKINT;
986  e1->u.ival = ivalue(&res);
987  }
988  else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
989  lua_Number n = fltvalue(&res);
990  if (luai_numisnan(n) || n == 0)
991  return 0;
992  e1->k = VKFLT;
993  e1->u.nval = n;
994  }
995  return 1;
996 }
997 
998 
999 /*
1000 ** Emit code for unary expressions that "produce values"
1001 ** (everything but 'not').
1002 ** Expression to produce final result will be encoded in 'e'.
1003 */
1004 static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
1005  int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */
1006  freeexp(fs, e);
1007  e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */
1008  e->k = VRELOCABLE; /* all those operations are relocatable */
1009  luaK_fixline(fs, line);
1010 }
1011 
1012 
1013 /*
1014 ** Emit code for binary expressions that "produce values"
1015 ** (everything but logical operators 'and'/'or' and comparison
1016 ** operators).
1017 ** Expression to produce final result will be encoded in 'e1'.
1018 ** Because 'luaK_exp2RK' can free registers, its calls must be
1019 ** in "stack order" (that is, first on 'e2', which may have more
1020 ** recent registers to be released).
1021 */
1022 static void codebinexpval (FuncState *fs, OpCode op,
1023  expdesc *e1, expdesc *e2, int line) {
1024  int rk2 = luaK_exp2RK(fs, e2); /* both operands are "RK" */
1025  int rk1 = luaK_exp2RK(fs, e1);
1026  freeexps(fs, e1, e2);
1027  e1->u.info = luaK_codeABC(fs, op, 0, rk1, rk2); /* generate opcode */
1028  e1->k = VRELOCABLE; /* all those operations are relocatable */
1029  luaK_fixline(fs, line);
1030 }
1031 
1032 
1033 /*
1034 ** Emit code for comparisons.
1035 ** 'e1' was already put in R/K form by 'luaK_infix'.
1036 */
1037 static void codecomp (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
1038  int rk1 = (e1->k == VK) ? RKASK(e1->u.info)
1039  : check_exp(e1->k == VNONRELOC, e1->u.info);
1040  int rk2 = luaK_exp2RK(fs, e2);
1041  freeexps(fs, e1, e2);
1042  switch (opr) {
1043  case OPR_NE: { /* '(a ~= b)' ==> 'not (a == b)' */
1044  e1->u.info = condjump(fs, OP_EQ, 0, rk1, rk2);
1045  break;
1046  }
1047  case OPR_GT: case OPR_GE: {
1048  /* '(a > b)' ==> '(b < a)'; '(a >= b)' ==> '(b <= a)' */
1049  OpCode op = cast(OpCode, (opr - OPR_NE) + OP_EQ);
1050  e1->u.info = condjump(fs, op, 1, rk2, rk1); /* invert operands */
1051  break;
1052  }
1053  default: { /* '==', '<', '<=' use their own opcodes */
1054  OpCode op = cast(OpCode, (opr - OPR_EQ) + OP_EQ);
1055  e1->u.info = condjump(fs, op, 1, rk1, rk2);
1056  break;
1057  }
1058  }
1059  e1->k = VJMP;
1060 }
1061 
1062 
1063 /*
1064 ** Aplly prefix operation 'op' to expression 'e'.
1065 */
1066 void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e, int line) {
1067  static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
1068  switch (op) {
1069  case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */
1070  if (constfolding(fs, op + LUA_OPUNM, e, &ef))
1071  break;
1072  /* FALLTHROUGH */
1073  case OPR_LEN:
1074  codeunexpval(fs, cast(OpCode, op + OP_UNM), e, line);
1075  break;
1076  case OPR_NOT: codenot(fs, e); break;
1077  default: lua_assert(0);
1078  }
1079 }
1080 
1081 
1082 /*
1083 ** Process 1st operand 'v' of binary operation 'op' before reading
1084 ** 2nd operand.
1085 */
1087  switch (op) {
1088  case OPR_AND: {
1089  luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */
1090  break;
1091  }
1092  case OPR_OR: {
1093  luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */
1094  break;
1095  }
1096  case OPR_CONCAT: {
1097  luaK_exp2nextreg(fs, v); /* operand must be on the 'stack' */
1098  break;
1099  }
1100  case OPR_ADD: case OPR_SUB:
1101  case OPR_MUL: case OPR_DIV: case OPR_IDIV:
1102  case OPR_MOD: case OPR_POW:
1103  case OPR_BAND: case OPR_BOR: case OPR_BXOR:
1104  case OPR_SHL: case OPR_SHR: {
1105  if (!tonumeral(v, NULL))
1106  luaK_exp2RK(fs, v);
1107  /* else keep numeral, which may be folded with 2nd operand */
1108  break;
1109  }
1110  default: {
1111  luaK_exp2RK(fs, v);
1112  break;
1113  }
1114  }
1115 }
1116 
1117 
1118 /*
1119 ** Finalize code for binary operation, after reading 2nd operand.
1120 ** For '(a .. b .. c)' (which is '(a .. (b .. c))', because
1121 ** concatenation is right associative), merge second CONCAT into first
1122 ** one.
1123 */
1125  expdesc *e1, expdesc *e2, int line) {
1126  switch (op) {
1127  case OPR_AND: {
1128  lua_assert(e1->t == NO_JUMP); /* list closed by 'luK_infix' */
1129  luaK_dischargevars(fs, e2);
1130  luaK_concat(fs, &e2->f, e1->f);
1131  *e1 = *e2;
1132  break;
1133  }
1134  case OPR_OR: {
1135  lua_assert(e1->f == NO_JUMP); /* list closed by 'luK_infix' */
1136  luaK_dischargevars(fs, e2);
1137  luaK_concat(fs, &e2->t, e1->t);
1138  *e1 = *e2;
1139  break;
1140  }
1141  case OPR_CONCAT: {
1142  luaK_exp2val(fs, e2);
1143  if (e2->k == VRELOCABLE &&
1144  GET_OPCODE(getinstruction(fs, e2)) == OP_CONCAT) {
1145  lua_assert(e1->u.info == GETARG_B(getinstruction(fs, e2))-1);
1146  freeexp(fs, e1);
1147  SETARG_B(getinstruction(fs, e2), e1->u.info);
1148  e1->k = VRELOCABLE; e1->u.info = e2->u.info;
1149  }
1150  else {
1151  luaK_exp2nextreg(fs, e2); /* operand must be on the 'stack' */
1152  codebinexpval(fs, OP_CONCAT, e1, e2, line);
1153  }
1154  break;
1155  }
1156  case OPR_ADD: case OPR_SUB: case OPR_MUL: case OPR_DIV:
1157  case OPR_IDIV: case OPR_MOD: case OPR_POW:
1158  case OPR_BAND: case OPR_BOR: case OPR_BXOR:
1159  case OPR_SHL: case OPR_SHR: {
1160  if (!constfolding(fs, op + LUA_OPADD, e1, e2))
1161  codebinexpval(fs, cast(OpCode, op + OP_ADD), e1, e2, line);
1162  break;
1163  }
1164  case OPR_EQ: case OPR_LT: case OPR_LE:
1165  case OPR_NE: case OPR_GT: case OPR_GE: {
1166  codecomp(fs, op, e1, e2);
1167  break;
1168  }
1169  default: lua_assert(0);
1170  }
1171 }
1172 
1173 
1174 /*
1175 ** Change line information associated with current position.
1176 */
1177 void luaK_fixline (FuncState *fs, int line) {
1178  fs->f->lineinfo[fs->pc - 1] = line;
1179 }
1180 
1181 
1182 /*
1183 ** Emit a SETLIST instruction.
1184 ** 'base' is register that keeps table;
1185 ** 'nelems' is #table plus those to be stored now;
1186 ** 'tostore' is number of values (in registers 'base + 1',...) to add to
1187 ** table (or LUA_MULTRET to add up to stack top).
1188 */
1189 void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
1190  int c = (nelems - 1)/LFIELDS_PER_FLUSH + 1;
1191  int b = (tostore == LUA_MULTRET) ? 0 : tostore;
1192  lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH);
1193  if (c <= MAXARG_C)
1194  luaK_codeABC(fs, OP_SETLIST, base, b, c);
1195  else if (c <= MAXARG_Ax) {
1196  luaK_codeABC(fs, OP_SETLIST, base, b, 0);
1197  codeextraarg(fs, c);
1198  }
1199  else
1200  luaX_syntaxerror(fs->ls, "constructor too long");
1201  fs->freereg = base + 1; /* free registers with list values */
1202 }
1203 
static void freereg(FuncState *fs, int reg)
Definition: lcode.cpp:386
Definition: lcode.h:34
struct LexState * ls
Definition: lparser.h:114
#define LUA_OPSHL
Definition: lua.h:206
#define LUA_OPIDIV
Definition: lua.h:202
static void fixjump(FuncState *fs, int pc, int dest)
Definition: lcode.cpp:103
#define nvalue(o)
Definition: lobject.h:165
void luaK_prefix(FuncState *fs, UnOpr op, expdesc *e, int line)
Definition: lcode.cpp:1066
#define LUA_OPDIV
Definition: lua.h:201
#define ttisinteger(o)
Definition: lobject.h:144
Definition: lcode.h:27
#define MAXARG_Ax
Definition: lopcodes.h:70
int luaK_codek(FuncState *fs, int reg, int k)
Definition: lcode.cpp:346
lu_byte t
Definition: lparser.h:62
Definition: lcode.h:33
Definition: lcode.h:31
#define setbvalue(obj, x)
Definition: lobject.h:218
#define GETARG_sBx(i)
Definition: lopcodes.h:112
Definition: lobject.h:407
#define check_exp(c, e)
Definition: llimits.h:90
int luaK_intK(FuncState *fs, lua_Integer n)
Definition: lcode.cpp:471
int luaK_jump(FuncState *fs)
Definition: lcode.cpp:136
#define LUA_MULTRET
Definition: lua.h:34
Definition: lparser.h:32
static void freeexps(FuncState *fs, expdesc *e1, expdesc *e2)
Definition: lcode.cpp:407
lua_Number nval
Definition: lparser.h:58
int pc
Definition: lparser.h:116
#define a
#define MAXREGS
Definition: lcode.cpp:33
int nk
Definition: lparser.h:119
#define LUA_OPUNM
Definition: lua.h:208
#define luaK_codeAsBx(fs, o, A, sBx)
Definition: lcode.h:46
Definition: lparser.h:42
int lasttarget
Definition: lparser.h:117
static Instruction * getjumpcontrol(FuncState *fs, int pc)
Definition: lcode.cpp:179
static void codecomp(FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2)
Definition: lcode.cpp:1037
#define cast(t, exp)
Definition: llimits.h:111
#define fltvalue(o)
Definition: lobject.h:164
#define cast_byte(i)
Definition: llimits.h:114
#define setnilvalue(obj)
Definition: lobject.h:210
int luaK_codeABx(FuncState *fs, OpCode o, int a, unsigned int bc)
Definition: lcode.cpp:324
static void removevalues(FuncState *fs, int list)
Definition: lcode.cpp:213
void luaK_setoneret(FuncState *fs, expdesc *e)
Definition: lcode.cpp:539
TValue * luaH_set(lua_State *L, Table *t, const TValue *key)
Definition: ltable.cpp:610
l_noret luaX_syntaxerror(LexState *ls, const char *msg)
Definition: llex.cpp:117
Definition: lcode.h:29
#define GET_OPCODE(i)
Definition: lopcodes.h:89
Definition: lcode.h:35
Definition: lopcodes.h:32
Definition: lparser.h:33
void luaK_self(FuncState *fs, expdesc *e, expdesc *key)
Definition: lcode.cpp:809
#define luaC_barrier(L, p, v)
Definition: lgc.h:118
union expdesc::@6 u
static int codeextraarg(FuncState *fs, int a)
Definition: lcode.cpp:335
static void exp2reg(FuncState *fs, expdesc *e, int reg)
Definition: lcode.cpp:675
struct expdesc::@6::@7 ind
#define MAXARG_sBx
Definition: lopcodes.h:64
static int getjump(FuncState *fs, int pc)
Definition: lcode.cpp:90
#define luai_numisnan(a)
Definition: llimits.h:298
Definition: lcode.h:31
OpCode
Definition: lopcodes.h:167
int info
Definition: lparser.h:59
Definition: lcode.h:33
void luaK_goiftrue(FuncState *fs, expdesc *e)
Definition: lcode.cpp:857
#define b
void luaK_nil(FuncState *fs, int from, int n)
Definition: lcode.cpp:64
Definition: lopcodes.h:32
#define CREATE_ABx(o, a, bc)
Definition: lopcodes.h:121
#define sethvalue(L, obj, x)
Definition: lobject.h:250
void luaK_ret(FuncState *fs, int first, int nret)
Definition: lcode.cpp:149
Definition: lparser.h:36
LUA_INTEGER lua_Integer
Definition: lua.h:93
static void discharge2reg(FuncState *fs, expdesc *e, int reg)
Definition: lcode.cpp:595
Definition: lparser.h:31
#define SETARG_sBx(i, b)
Definition: lopcodes.h:113
Definition: lparser.h:46
#define LUA_OPADD
Definition: lua.h:196
static void discharge2anyreg(FuncState *fs, expdesc *e)
Definition: lcode.cpp:641
#define GETARG_C(i)
Definition: lopcodes.h:103
void luaK_exp2nextreg(FuncState *fs, expdesc *e)
Definition: lcode.cpp:703
#define vkisinreg(k)
Definition: lparser.h:52
static int luaK_numberK(FuncState *fs, lua_Number r)
Definition: lcode.cpp:481
UnOpr
Definition: lcode.h:40
int jpc
Definition: lparser.h:118
#define GETARG_A(i)
Definition: lopcodes.h:97
#define LUA_OPBOR
Definition: lua.h:204
#define LUA_OPBNOT
Definition: lua.h:209
Definition: lcode.h:30
#define SETARG_C(i, v)
Definition: lopcodes.h:104
static int luaK_code(FuncState *fs, Instruction i)
Definition: lcode.cpp:293
Definition: lcode.h:33
#define LUA_OPBXOR
Definition: lua.h:205
#define getBMode(m)
Definition: lopcodes.h:284
void luaK_indexed(FuncState *fs, expdesc *t, expdesc *k)
Definition: lcode.cpp:946
#define ivalue(o)
Definition: lobject.h:163
static void dischargejpc(FuncState *fs)
Definition: lcode.cpp:242
static int code_loadbool(FuncState *fs, int A, int b, int jump)
Definition: lcode.cpp:649
#define MAXARG_B
Definition: lopcodes.h:75
#define LFIELDS_PER_FLUSH
Definition: lopcodes.h:294
#define hasjumps(e)
Definition: lcode.cpp:36
#define LUA_OPBAND
Definition: lua.h:203
static int boolK(FuncState *fs, int b)
Definition: lcode.cpp:491
#define NO_REG
Definition: lopcodes.h:153
static void codeunexpval(FuncState *fs, OpCode op, expdesc *e, int line)
Definition: lcode.cpp:1004
int * lineinfo
Definition: lobject.h:423
static int jumponcond(FuncState *fs, expdesc *e, int cond)
Definition: lcode.cpp:839
#define testTMode(m)
Definition: lopcodes.h:287
BinOpr
Definition: lcode.h:26
void luaK_patchtohere(FuncState *fs, int list)
Definition: lcode.cpp:252
Instruction * code
Definition: lobject.h:421
void luaK_reserveregs(FuncState *fs, int n)
Definition: lcode.cpp:375
void luaK_checkstack(FuncState *fs, int n)
Definition: lcode.cpp:361
Definition: lcode.h:27
void luaK_exp2anyregup(FuncState *fs, expdesc *e)
Definition: lcode.cpp:734
void luaK_setreturns(FuncState *fs, expdesc *e, int nresults)
Definition: lcode.cpp:515
lu_byte maxstacksize
Definition: lobject.h:411
void luaK_posfix(FuncState *fs, BinOpr op, expdesc *e1, expdesc *e2, int line)
Definition: lcode.cpp:1124
static void patchlistaux(FuncState *fs, int list, int vtarget, int reg, int dtarget)
Definition: lcode.cpp:224
Definition: lcode.h:40
int sizelineinfo
Definition: lobject.h:415
#define SETARG_B(i, v)
Definition: lopcodes.h:101
Definition: lcode.h:27
Definition: lcode.h:30
Definition: lcode.h:27
Definition: lparser.h:29
#define lua_assert(c)
Definition: llimits.h:89
std::size_t i
Definition: function.cpp:933
Definition: lcode.h:35
static void freeexp(FuncState *fs, expdesc *e)
Definition: lcode.cpp:397
static int nilK(FuncState *fs)
Definition: lcode.cpp:501
lu_byte nactvar
Definition: lparser.h:123
#define LUA_OPSHR
Definition: lua.h:207
static void negatecondition(FuncState *fs, expdesc *e)
Definition: lcode.cpp:825
lu_byte freereg
Definition: lparser.h:125
#define setpvalue(obj, x)
Definition: lobject.h:215
mock_party p
#define GETARG_B(i)
Definition: lopcodes.h:100
#define setivalue(obj, x)
Definition: lobject.h:204
Definition: lparser.h:28
#define setobj(L, obj1, obj2)
Definition: lobject.h:259
int luaK_exp2RK(FuncState *fs, expdesc *e)
Definition: lcode.cpp:758
Definition: lcode.h:28
#define CREATE_Ax(o, a)
Definition: lopcodes.h:125
static map_location::DIRECTION s
#define getOpMode(m)
Definition: lopcodes.h:283
#define setfltvalue(obj, x)
Definition: lobject.h:198
int luaK_getlabel(FuncState *fs)
Definition: lcode.cpp:168
int sizek
Definition: lobject.h:413
#define NO_JUMP
Definition: lcode.h:20
Definition: lcode.h:27
static int tonumeral(const expdesc *e, TValue *v)
Definition: lcode.cpp:43
static void codebinexpval(FuncState *fs, OpCode op, expdesc *e1, expdesc *e2, int line)
Definition: lcode.cpp:1022
void luaK_goiffalse(FuncState *fs, expdesc *e)
Definition: lcode.cpp:884
#define MAX_INT
Definition: llimits.h:51
#define SETARG_A(i, v)
Definition: lopcodes.h:98
Definition: lcode.h:40
#define getinstruction(fs, e)
Definition: lcode.h:44
int sizecode
Definition: lobject.h:414
Definition: lcode.h:34
int luaK_exp2anyreg(FuncState *fs, expdesc *e)
Definition: lcode.cpp:715
#define next(ls)
Definition: llex.cpp:32
The paths manager is responsible for recording the various paths that binary files may be located at...
Definition: fs_commit.cpp:37
void luaK_storevar(FuncState *fs, expdesc *var, expdesc *ex)
Definition: lcode.cpp:782
unsigned long Instruction
Definition: llimits.h:165
#define getCMode(m)
Definition: lopcodes.h:285
#define ttype(o)
Definition: lobject.h:133
std::string jump(const unsigned amount)
Definition: utils.hpp:74
Definition: lcode.h:34
#define f
Definition: lcode.h:30
double t
Definition: astarsearch.cpp:63
Proto * f
Definition: lparser.h:112
struct lua_State * L
Definition: llex.h:65
static int cond(LexState *ls)
Definition: lparser.cpp:1177
static int condjump(FuncState *fs, OpCode op, int A, int B, int C)
Definition: lcode.cpp:158
static int addk(FuncState *fs, TValue *key, TValue *v)
Definition: lcode.cpp:428
#define cast_int(i)
Definition: llimits.h:116
#define ISK(x)
Definition: lopcodes.h:137
Table * h
Definition: llex.h:68
void luaK_infix(FuncState *fs, BinOpr op, expdesc *v)
Definition: lcode.cpp:1086
Definition: lcode.h:40
void luaK_patchlist(FuncState *fs, int list, int target)
Definition: lcode.cpp:263
#define MAXARG_C
Definition: lopcodes.h:76
int f
Definition: lparser.h:67
Definition: lopcodes.h:32
void luaK_patchclose(FuncState *fs, int list, int level)
Definition: lcode.cpp:278
#define RKASK(x)
Definition: lopcodes.h:147
#define e
#define MAXARG_Bx
Definition: lopcodes.h:63
void luaK_dischargevars(FuncState *fs, expdesc *e)
Definition: lcode.cpp:556
#define CREATE_ABC(o, a, b, c)
Definition: lopcodes.h:116
#define tointeger(o, i)
Definition: lvm.h:43
int luaK_codeABC(FuncState *fs, OpCode o, int a, int b, int c)
Definition: lcode.cpp:312
lua_Integer ival
Definition: lparser.h:57
TValue * k
Definition: lobject.h:420
void luaK_fixline(FuncState *fs, int line)
Definition: lcode.cpp:1177
mock_char c
#define luaM_growvector(L, v, nelems, size, t, limit, e)
Definition: lmem.h:52
static map_location::DIRECTION n
#define MAXARG_A
Definition: lopcodes.h:74
void luaK_concat(FuncState *fs, int *l1, int l2)
Definition: lcode.cpp:116
static int constfolding(FuncState *fs, int op, expdesc *e1, const expdesc *e2)
Definition: lcode.cpp:978
void luaK_exp2val(FuncState *fs, expdesc *e)
Definition: lcode.cpp:744
#define luaV_rawequalobj(t1, t2)
Definition: lvm.h:48
void luaO_arith(lua_State *L, int op, const TValue *p1, const TValue *p2, TValue *res)
Definition: lobject.cpp:123
LUA_NUMBER lua_Number
Definition: lua.h:89
Definition: lparser.h:37
static int validop(int op, TValue *v1, TValue *v2)
Definition: lcode.cpp:960
static int need_value(FuncState *fs, int list)
Definition: lcode.cpp:659
#define LUA_OPMOD
Definition: lua.h:199
Definition: lparser.h:30
static void codenot(FuncState *fs, expdesc *e)
Definition: lcode.cpp:910
static int patchtestreg(FuncState *fs, int node, int reg)
Definition: lcode.cpp:195
int luaK_stringK(FuncState *fs, TString *s)
Definition: lcode.cpp:458
void luaK_setlist(FuncState *fs, int base, int nelems, int tostore)
Definition: lcode.cpp:1189
int lastline
Definition: llex.h:61
expkind k
Definition: lparser.h:55
#define setsvalue(L, obj, x)
Definition: lobject.h:225
#define MAXINDEXRK
Definition: lopcodes.h:143