The Battle for Wesnoth  1.13.10+dev
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
default_map_generator_job.cpp
Go to the documentation of this file.
1 /*
2  Copyright (C) 2003 - 2017 by David White <dave@whitevine.net>
3  Part of the Battle for Wesnoth Project http://www.wesnoth.org/
4 
5  This program is free software; you can redistribute it and/or modify
6  it under the terms of the GNU General Public License as published by
7  the Free Software Foundation; either version 2 of the License, or
8  (at your option) any later version.
9  This program is distributed in the hope that it will be useful,
10  but WITHOUT ANY WARRANTY.
11 
12  See the COPYING file for more details.
13 */
14 
15 /**
16  * @file
17  * Map-generator, with standalone testprogram.
18  */
19 
21 #include "formula/string_utils.hpp"
22 #include "game_config_manager.hpp"
23 #include "gettext.hpp"
24 #include "language.hpp"
25 #include "log.hpp"
26 #include "map/map.hpp"
27 #include "generators/map_generator.hpp" // mapgen_exception
28 #include "pathfind/pathfind.hpp"
29 #include "pathutils.hpp"
31 #include "seed_rng.hpp"
32 #include "wml_exception.hpp"
33 
34 #include <SDL_timer.h>
35 
36 static lg::log_domain log_mapgen("mapgen");
37 #define ERR_NG LOG_STREAM(err, log_mapgen)
38 #define LOG_NG LOG_STREAM(info, log_mapgen)
39 
40 typedef std::vector<std::vector<int> > height_map;
42 
43 namespace {
44  /**
45  * Calculates the cost of building a road over terrain. For use in the
46  * a_star_search algorithm.
47  */
48  struct road_path_calculator : pathfind::cost_calculator
49  {
50  road_path_calculator(const terrain_map& terrain, const config& cfg, int seed)
51  : calls(0)
52  , map_(terrain)
53  , cfg_(cfg)
54  , windiness_(std::max<int>(1, cfg["road_windiness"].to_int())) // Find out how windey roads should be.
55  , seed_(seed)
56  , cache_()
57  {
58  }
59 
60  virtual double cost(const map_location& loc, const double so_far) const;
61 
62  mutable int calls;
63  private:
64  const terrain_map& map_;
65  const config& cfg_;
66  int windiness_;
67  int seed_;
68  mutable std::map<t_translation::terrain_code, double> cache_;
69  };
70 
71  double road_path_calculator::cost(const map_location& loc, const double /*so_far*/) const
72  {
73  ++calls;
74  if(loc.x < 0 || loc.y < 0 || loc.x >= map_.w || loc.y >= map_.h) {
75 
77  }
78 
79  // We multiply the cost by a random amount,
80  // depending upon how 'windy' the road should be.
81  // If windiness is 1, that will mean that the cost is always genuine,
82  // and so the road always takes the shortest path.
83  // If windiness is greater than 1, we sometimes over-report costs
84  // for some segments, to make the road wind a little.
85 
86  double windiness = 1.0;
87 
88  if(windiness_ > 1) {
89  // modified pseudo_random taken from builder.cpp
90  unsigned int a = (loc.x + 92872973) ^ 918273;
91  unsigned int b = (loc.y + 1672517) ^ 128123;
92  unsigned int c = a*b + a + b + seed_;
93  unsigned int random = c*c;
94  // this is just "big random number modulo windiness_"
95  // but avoid the "modulo by a low number (like 2)"
96  // because it can increase arithmetic patterns
97  int noise = random % (windiness_ * 137) / 137;
98  windiness += noise;
99  }
100 
101  const t_translation::terrain_code c = map_[loc.x][loc.y];
102  const std::map<t_translation::terrain_code, double>::const_iterator itor = cache_.find(c);
103  if(itor != cache_.end()) {
104  return itor->second*windiness;
105  }
106 
107  static std::string terrain;
109  double res = getNoPathValue();
110  if(const config &child = cfg_.find_child("road_cost", "terrain", terrain)) {
111  res = child["cost"].to_double();
112  }
113 
114  cache_.emplace(c, res);
115  return windiness*res;
116  }
117 
118 
119  struct is_valid_terrain
120  {
121  is_valid_terrain(const t_translation::ter_map& map, const t_translation::ter_list& terrain_list);
122  bool operator()(int x, int y) const;
123  private:
125  const t_translation::ter_list& terrain_;
126  };
127 
129  : map_(map), terrain_(terrain_list)
130  {
131  }
132 
133  bool is_valid_terrain::operator()(int x, int y) const
134  {
135  if(x < 0 || x >= map_.w || y < 0 || y >= map_.h) {
136 
137  return false;
138  }
139 
140  return std::find(terrain_.begin(),terrain_.end(),map_[x][y]) != terrain_.end();
141  }
142 
143 
144  /* the configuration file should contain a number of [height] tags:
145  * [height]
146  * height=n
147  * terrain=x
148  * [/height]
149  * These should be in descending order of n.
150  * They are checked sequentially, and if height is greater than n for that tile,
151  * then the tile is set to terrain type x.
152  */
153  class terrain_height_mapper
154  {
155  public:
156  explicit terrain_height_mapper(const config& cfg);
157 
158  bool convert_terrain(const int height) const;
159  t_translation::terrain_code convert_to() const;
160 
161  private:
162  int terrain_height;
164  };
165 
166  terrain_height_mapper::terrain_height_mapper(const config& cfg) :
167  terrain_height(cfg["height"]),
169  {
170  const std::string& terrain = cfg["terrain"];
171  if(!terrain.empty()) {
172  to = t_translation::read_terrain_code(terrain);
173  }
174  }
175 
176  bool terrain_height_mapper::convert_terrain(const int height) const
177  {
178  return height >= terrain_height;
179  }
180 
181  t_translation::terrain_code terrain_height_mapper::convert_to() const
182  {
183  return to;
184  }
185 
186 
187  class terrain_converter
188  {
189  public:
190  explicit terrain_converter(const config& cfg);
191 
192  bool convert_terrain(const t_translation::terrain_code & terrain, const int height, const int temperature) const;
193  t_translation::terrain_code convert_to() const;
194 
195  private:
196  int min_temp, max_temp, min_height, max_height;
199  };
200 
201  terrain_converter::terrain_converter(const config& cfg)
202  : min_temp(cfg["min_temperature"].to_int(-100000))
203  , max_temp(cfg["max_temperature"].to_int(100000))
204  , min_height(cfg["min_height"].to_int(-100000))
205  , max_height(cfg["max_height"].to_int(100000))
206  , from(t_translation::read_list(cfg["from"]))
208  {
209  const std::string& to_str = cfg["to"];
210  if(!to_str.empty()) {
212  }
213  }
214 
215  bool terrain_converter::convert_terrain(const t_translation::terrain_code & terrain,
216  const int height, const int temperature) const
217  {
218  return std::find(from.begin(),from.end(),terrain) != from.end() && height >= min_height && height <= max_height && temperature >= min_temp && temperature <= max_temp && to != t_translation::NONE_TERRAIN;
219  }
220 
221  t_translation::terrain_code terrain_converter::convert_to() const
222  {
223  return to;
224  }
225 
226 } // end anon namespace
227 
228 
230  : rng_(seed_rng::next_seed())
231  , game_config_(game_config_manager::get()->game_config())
232 {
233 }
234 
236  : rng_(seed)
237  , game_config_(game_config_manager::get()->game_config())
238 {
239 }
240 
241 /**
242  * Generate a height-map.
243  *
244  * Basically we generate a lot of hills, each hill being centered at a certain
245  * point, with a certain radius - being a half sphere. Hills are combined
246  * additively to form a bumpy surface. The size of each hill varies randomly
247  * from 1-hill_size. We generate 'iterations' hills in total. The range of
248  * heights is normalized to 0-1000. 'island_size' controls whether or not the
249  * map should tend toward an island shape, and if so, how large the island
250  * should be. Hills with centers that are more than 'island_size' away from
251  * the center of the map will be inverted (i.e. be valleys). 'island_size' as
252  * 0 indicates no island.
253  */
254 height_map default_map_generator_job::generate_height_map(size_t width, size_t height, size_t iterations, size_t hill_size, size_t island_size, size_t island_off_center)
255 {
256  height_map res(width, std::vector<int>(height,0));
257 
258  size_t center_x = width/2;
259  size_t center_y = height/2;
260 
261  LOG_NG << "off-centering...\n";
262 
263  if(island_off_center != 0) {
264  switch(rng_()%4) {
265  case 0:
266  center_x += island_off_center;
267  break;
268  case 1:
269  center_y += island_off_center;
270  break;
271  case 2:
272  if(center_x < island_off_center) {
273  center_x = 0;
274  } else {
275  center_x -= island_off_center;
276  }
277  break;
278  case 3:
279  if(center_y < island_off_center) {
280  center_y = 0;
281  } else {
282  center_y -= island_off_center;
283  }
284  break;
285  }
286  }
287 
288  for(size_t i = 0; i != iterations; ++i) {
289 
290  // (x1,y1) is the location of the hill,
291  // and 'radius' is the radius of the hill.
292  // We iterate over all points, (x2,y2).
293  // The formula for the amount the height is increased by is:
294  // radius - sqrt((x2-x1)^2 + (y2-y1)^2) with negative values ignored.
295  //
296  // Rather than iterate over every single point, we can reduce the points
297  // to a rectangle that contains all the positive values for this formula --
298  // the rectangle is given by min_x,max_x,min_y,max_y.
299 
300  // Is this a negative hill? (i.e. a valley)
301  bool is_valley = false;
302 
303  int x1 = island_size > 0 ? center_x - island_size + (rng_()%(island_size*2)) : int(rng_()%width);
304  int y1 = island_size > 0 ? center_y - island_size + (rng_()%(island_size*2)) : int(rng_()%height);
305 
306  // We have to check whether this is actually a valley
307  if(island_size != 0) {
308  const size_t diffx = std::abs(x1 - int(center_x));
309  const size_t diffy = std::abs(y1 - int(center_y));
310  const size_t dist = size_t(std::sqrt(double(diffx*diffx + diffy*diffy)));
311  is_valley = dist > island_size;
312  }
313 
314  const int radius = rng_()%hill_size + 1;
315 
316  const int min_x = x1 - radius > 0 ? x1 - radius : 0;
317  const int max_x = x1 + radius < static_cast<long>(res.size()) ? x1 + radius : res.size();
318  const int min_y = y1 - radius > 0 ? y1 - radius : 0;
319  const int max_y = y1 + radius < static_cast<long>(res.front().size()) ? y1 + radius : res.front().size();
320 
321  for(int x2 = min_x; x2 < max_x; ++x2) {
322  for(int y2 = min_y; y2 < max_y; ++y2) {
323  const int xdiff = (x2-x1);
324  const int ydiff = (y2-y1);
325 
326  const int hill_height = radius - int(std::sqrt(double(xdiff*xdiff + ydiff*ydiff)));
327 
328  if(hill_height > 0) {
329  if(is_valley) {
330  if(hill_height > res[x2][y2]) {
331  res[x2][y2] = 0;
332  } else {
333  res[x2][y2] -= hill_height;
334  }
335  } else {
336  res[x2][y2] += hill_height;
337  }
338  }
339  }
340  }
341  }
342 
343  // Find the highest and lowest points on the map for normalization:
344  int heighest = 0, lowest = 100000, x;
345  for(x = 0; size_t(x) != res.size(); ++x) {
346  for(int y = 0; size_t(y) != res[x].size(); ++y) {
347  if(res[x][y] > heighest) {
348  heighest = res[x][y];
349  }
350 
351  if(res[x][y] < lowest) {
352  lowest = res[x][y];
353  }
354  }
355  }
356 
357  // Normalize the heights to the range 0-1000:
358  heighest -= lowest;
359  for(x = 0; size_t(x) != res.size(); ++x) {
360  for(int y = 0; size_t(y) != res[x].size(); ++y) {
361  res[x][y] -= lowest;
362  res[x][y] *= 1000;
363  if(heighest != 0) {
364  res[x][y] /= heighest;
365  }
366  }
367  }
368 
369  return res;
370 }
371 
372 /**
373  * Generate a lake.
374  *
375  * It will create water at (x,y), and then have 'lake_fall_off' % chance to
376  * make another water tile in each of the directions n,s,e,w. In each of the
377  * directions it does make another water tile, it will have 'lake_fall_off'/2 %
378  * chance to make another water tile in each of the directions. This will
379  * continue recursively.
380  */
381 bool default_map_generator_job::generate_lake(terrain_map& terrain, int x, int y, int lake_fall_off, std::set<map_location>& locs_touched)
382 {
383  if(x < 0 || y < 0 || x >= terrain.w || y >= terrain.h || lake_fall_off < 0) {
384  return false;
385  }
386  //we checked for this eariler.
387  unsigned int ulake_fall_off = lake_fall_off;
388  terrain[x][y] = t_translation::SHALLOW_WATER;
389  locs_touched.insert(map_location(x,y));
390 
391  if((rng_()%100) < ulake_fall_off) {
392  generate_lake(terrain,x+1,y,lake_fall_off/2,locs_touched);
393  }
394 
395  if((rng_()%100) < ulake_fall_off) {
396  generate_lake(terrain,x-1,y,lake_fall_off/2,locs_touched);
397  }
398 
399  if((rng_()%100) < ulake_fall_off) {
400  generate_lake(terrain,x,y+1,lake_fall_off/2,locs_touched);
401  }
402 
403  if((rng_()%100) < ulake_fall_off) {
404  generate_lake(terrain,x,y-1,lake_fall_off/2,locs_touched);
405  }
406 
407  return true;
408 }
409 
410 /**
411  * River generation.
412  *
413  * Rivers have a source, and then keep on flowing until they meet another body
414  * of water, which they flow into, or until they reach the edge of the map.
415  * Rivers will always flow downhill, except that they can flow a maximum of
416  * 'river_uphill' uphill. This is to represent the water eroding the higher
417  * ground lower.
418  *
419  * Every possible path for a river will be attempted, in random order, and the
420  * first river path that can be found that makes the river flow into another
421  * body of water or off the map will be used.
422  *
423  * If no path can be found, then the river's generation will be aborted, and
424  * false will be returned. true is returned if the river is generated
425  * successfully.
426  */
427 
429  terrain_map& terrain, int x, int y, std::vector<map_location>& river,
430  std::set<map_location>& seen_locations, int river_uphill)
431 {
432  const bool on_map = x >= 0 && y >= 0 &&
433  x < static_cast<long>(heights.size()) &&
434  y < static_cast<long>(heights.back().size());
435 
436  if(on_map && !river.empty() && heights[x][y] >
437  heights[river.back().x][river.back().y] + river_uphill) {
438 
439  return false;
440  }
441 
442  // If we're at the end of the river
443  if(!on_map || terrain[x][y] == t_translation::SHALLOW_WATER ||
444  terrain[x][y] == t_translation::DEEP_WATER) {
445 
446  LOG_NG << "generating river...\n";
447 
448  // Generate the river
449  for(auto i : river) {
450  terrain[i.x][i.y] = t_translation::SHALLOW_WATER;
451  }
452 
453  LOG_NG << "done generating river\n";
454 
455  return true;
456  }
457 
458  map_location current_loc(x,y);
459  map_location adj[6];
460  get_adjacent_tiles(current_loc,adj);
461  std::shuffle(std::begin(adj), std::end(adj), rng_);
462 
463  // Mark that we have attempted from this map_location
464  seen_locations.insert(current_loc);
465  river.push_back(current_loc);
466  for(const map_location& loc : adj) {
467  if(seen_locations.count(loc) == 0) {
468  const bool res = generate_river_internal(heights,terrain,loc.x,loc.y,river,seen_locations,river_uphill);
469  if(res) {
470  return true;
471  }
472 
473  }
474  }
475 
476  river.pop_back();
477 
478  return false;
479 }
480 
481 std::vector<map_location> default_map_generator_job::generate_river(const height_map& heights, terrain_map& terrain, int x, int y, int river_uphill)
482 {
483  std::vector<map_location> river;
484  std::set<map_location> seen_locations;
485  const bool res = generate_river_internal(heights,terrain,x,y,river,seen_locations,river_uphill);
486  if(!res) {
487  river.clear();
488  }
489 
490  return river;
491 }
492 
493 /**
494  * Returns a random tile at one of the borders of a map that is of the given
495  * dimensions.
496  */
498 {
499  const int side = rng_()%4;
500  if(side < 2) {
501  const int x = rng_()%width;
502  const int y = side == 0 ? 0 : height-1;
503  return map_location(x,y);
504  } else {
505  const int y = rng_()%height;
506  const int x = side == 2 ? 0 : width-1;
507  return map_location(x,y);
508  }
509 }
510 
511 /** Function which, given the map will output it in a valid format. */
514 {
515  // Remember that we only want the middle 1/9th of the map.
516  // All other segments of the map are there only to give
517  // the important middle part some context.
518  // We also have a border so also adjust for that.
519  const size_t begin_x = terrain.w / 3 - gamemap::default_border ;
520  const size_t end_x = terrain.w * 2 / 3 + gamemap::default_border;
521  const size_t begin_y = terrain.h / 3 - gamemap::default_border;
522  const size_t end_y = terrain.h * 2 / 3 + gamemap::default_border;
523 
524  terrain_map map(end_x - begin_x, end_y - begin_y);
525  for(size_t y = begin_y; y != end_y; ++y) {
526  for(size_t x = begin_x; x != end_x; ++x) {
527  map[x - begin_x][y - begin_y] = terrain[x][y];
528  }
529  }
530 
531  // Since the map has been resized,
532  // the starting locations also need to be fixed
533  for (auto it = starting_positions.left.begin(); it != starting_positions.left.end(); ++it) {
534  starting_positions.left.modify_data(it, [=](t_translation::coordinate& pos) { pos.x -= begin_x; pos.y -= begin_y; });
535  }
536  return t_translation::write_game_map(map, starting_positions);
537 }
538 
539 static int rank_castle_location(int x, int y, const is_valid_terrain& valid_terrain, int min_x, int max_x, int min_y, int max_y, size_t min_distance, const std::vector<map_location>& other_castles, int highest_ranking)
540 {
541  const map_location loc(x,y);
542 
543  size_t avg_distance = 0, lowest_distance = 1000;
544 
545  for(std::vector<map_location>::const_iterator c = other_castles.begin(); c != other_castles.end(); ++c) {
546  const size_t distance = distance_between(loc,*c);
547  if(distance < 6) {
548  return 0;
549  }
550 
551  if(distance < lowest_distance) {
552  lowest_distance = distance;
553  }
554 
555  if(distance < min_distance) {
556  return -1;
557  }
558 
559  avg_distance += distance;
560  }
561 
562  if(!other_castles.empty()) {
563  avg_distance /= other_castles.size();
564  }
565 
566  for(int i = x-1; i <= x+1; ++i) {
567  for(int j = y-1; j <= y+1; ++j) {
568  if(!valid_terrain(i,j)) {
569  return 0;
570  }
571  }
572  }
573 
574  const int x_from_border = std::min<int>(x - min_x,max_x - x);
575  const int y_from_border = std::min<int>(y - min_y,max_y - y);
576 
577  const int border_ranking = min_distance - std::min<int>(x_from_border,y_from_border) + min_distance - x_from_border - y_from_border;
578 
579  int current_ranking = border_ranking*2 + avg_distance*10 + lowest_distance*10;
580  static const int num_nearby_locations = 11*11;
581 
582  const int max_possible_ranking = current_ranking + num_nearby_locations;
583 
584  if(max_possible_ranking < highest_ranking) {
585  return current_ranking;
586  }
587 
588  int surrounding_ranking = 0;
589 
590  for(int xpos = x-5; xpos <= x+5; ++xpos) {
591  for(int ypos = y-5; ypos <= y+5; ++ypos) {
592  if(valid_terrain(xpos,ypos)) {
593  ++surrounding_ranking;
594  }
595  }
596  }
597 
598  return surrounding_ranking + current_ranking;
599 }
600 
601 typedef std::map<t_translation::terrain_code, t_translation::ter_list> tcode_list_cache;
602 
604  const size_t x, const size_t y, const size_t radius, const config& cfg,
605  tcode_list_cache &adj_liked_cache)
606 {
607  const map_location loc(x,y);
608  std::set<map_location> locs;
609  get_tiles_radius(loc,radius,locs);
610  map_location best_loc;
611  int best_rating = 0;
612  for(auto i : locs) {
613  if(i.x < 0 || i.y < 0 || i.x >= map.w ||
614  i.y >= map.h) {
615 
616  continue;
617  }
618 
619  const t_translation::terrain_code t = map[i.x][i.y];
621  if(const config &child = cfg.find_child("village", "terrain", str)) {
622  tcode_list_cache::iterator l = adj_liked_cache.find(t);
623  t_translation::ter_list *adjacent_liked;
624  if(l != adj_liked_cache.end()) {
625  adjacent_liked = &(l->second);
626  } else {
627  adj_liked_cache[t] = t_translation::read_list(child["adjacent_liked"]);
628  adjacent_liked = &(adj_liked_cache[t]);
629  }
630 
631  int rating = child["rating"];
632  map_location adj[6];
634  for(size_t n = 0; n != 6; ++n) {
635  if(adj[n].x < 0 || adj[n].y < 0 ||
636  adj[n].x >= map.w ||
637  adj[n].y >= map.h) {
638 
639  continue;
640  }
641 
642  const t_translation::terrain_code t2 = map[adj[n].x][adj[n].y];
643  rating += std::count(adjacent_liked->begin(),adjacent_liked->end(),t2);
644  }
645 
646  if(rating > best_rating) {
647  best_loc = map_location(i.x,i.y);
648  best_rating = rating;
649  }
650  }
651  }
652 
653  return best_loc;
654 }
655 
656 // "flood fill" a tile name to adjacent tiles of certain terrain
657 static void flood_name(const map_location& start, const std::string& name, std::map<map_location,std::string>& tile_names,
658  const t_translation::ter_match& tile_types, const terrain_map& terrain,
659  unsigned width, unsigned height,
660  size_t label_count, std::map<map_location,std::string>* labels, const std::string& full_name) {
661  map_location adj[6];
662  get_adjacent_tiles(start,adj);
663  size_t n;
664  //if adjacent tiles are tiles and unnamed, name them
665  for(n = 0; n < 6; n++) {
666  //we do not care for tiles outside the middle part
667  //cast to unsigned to skip x < 0 || y < 0 as well.
668  if(unsigned(adj[n].x) >= width / 3 || unsigned(adj[n].y) >= height / 3) {
669  continue;
670  }
671 
672  const t_translation::terrain_code terr = terrain[adj[n].x + (width / 3)][adj[n].y + (height / 3)];
673  const map_location loc(adj[n].x, adj[n].y);
674  if((t_translation::terrain_matches(terr, tile_types)) && (tile_names.find(loc) == tile_names.end())) {
675  tile_names.emplace(loc, name);
676  //labeling decision: this is result of trial and error on what looks best in game
677  if(label_count % 6 == 0) { //ensure that labels do not occur more often than every 6 recursions
678  labels->emplace(loc, full_name);
679  label_count++; //ensure that no adjacent tiles get labeled
680  }
681  flood_name(adj[n], name, tile_names, tile_types, terrain, width, height, label_count++, labels, full_name);
682  }
683  }
684 }
685 
686 std::string default_map_generator_job::default_generate_map(generator_data data, std::map<map_location,std::string>* labels, const config& cfg)
687 {
688  log_scope("map generation");
689 
690  // Odd widths are nasty
691  VALIDATE(is_even(data.width), _("Random maps with an odd width aren't supported."));
692 
693  // Try to find configuration for castles
694  const config& castle_config = cfg.child("castle");
695 
696  int ticks = SDL_GetTicks();
697 
698  // We want to generate a map that is 9 times bigger than the actual size desired.
699  // Only the middle part of the map will be used, but the rest is so that the map we
700  // end up using can have a context (e.g. rivers flowing from out of the map into the map,
701  // same for roads, etc.)
702  data.width *= 3;
703  data.height *= 3;
704 
705  config naming;
706 
707  if(cfg.has_child("naming")) {
708  naming = game_config_.child("naming");
709  naming.append_attributes(cfg.child("naming"));
710  }
711 
712  // If the [naming] child is empty, we cannot provide good names.
713  std::map<map_location,std::string>* misc_labels = naming.empty() ? nullptr : labels;
714 
715  std::shared_ptr<name_generator>
716  base_name_generator, river_name_generator, lake_name_generator,
717  road_name_generator, bridge_name_generator, mountain_name_generator,
718  forest_name_generator, swamp_name_generator;
719 
720  if(misc_labels != nullptr) {
721  name_generator_factory base_generator_factory{ naming, {"male", "base", "bridge", "road", "river", "forest", "lake", "mountain", "swamp"} };
722 
723  naming.get_old_attribute("base_names", "male_names", "[naming]male_names= is deprecated, use base_names= instead");
724  //Due to the attribute detection feature of the factory we also support male_name_generator= but keep it undocumented.
725 
726  base_name_generator = base_generator_factory.get_name_generator( (naming.has_attribute("base_names") || naming.has_attribute("base_name_generator")) ? "base" : "male" );
727  river_name_generator = base_generator_factory.get_name_generator("river");
728  lake_name_generator = base_generator_factory.get_name_generator("lake");
729  road_name_generator = base_generator_factory.get_name_generator("road");
730  bridge_name_generator = base_generator_factory.get_name_generator("bridge");
731  mountain_name_generator = base_generator_factory.get_name_generator("mountain");
732  forest_name_generator = base_generator_factory.get_name_generator("forest");
733  swamp_name_generator = base_generator_factory.get_name_generator("swamp");
734  }
735 
736  // Generate the height of everything.
737  const height_map heights = generate_height_map(data.width, data.height, data.iterations, data.hill_size, data.island_size, data.island_off_center);
738 
739  LOG_NG << "Done generating height map. " << (SDL_GetTicks() - ticks) << " ticks elapsed" << "\n";
740  ticks = SDL_GetTicks();
741 
742  // Find out what the 'flatland' on this map is, i.e. grassland.
743  std::string flatland = cfg["default_flatland"];
744  if(flatland.empty()) {
746  }
747 
749 
750  std::vector<terrain_height_mapper> height_conversion;
751  for(const config& h : cfg.child_range("height")) {
752  height_conversion.emplace_back(h);
753  }
754 
755  terrain_map terrain(data.width, data.height, grassland);
756  for(size_t x = 0; x != heights.size(); ++x) {
757  for(size_t y = 0; y != heights[x].size(); ++y) {
758  for(auto i : height_conversion) {
759  if(i.convert_terrain(heights[x][y])) {
760  terrain[x][y] = i.convert_to();
761  break;
762  }
763  }
764  }
765  }
766 
768  LOG_NG << output_map(terrain, starting_positions);
769  LOG_NG << "Placed landforms. " << (SDL_GetTicks() - ticks) << " ticks elapsed" << "\n";
770  ticks = SDL_GetTicks();
771 
772  /* Now that we have our basic set of flatland/hills/mountains/water,
773  * we can place lakes and rivers on the map.
774  * All rivers are sourced at a lake.
775  * Lakes must be in high land - at least 'min_lake_height'.
776  * (Note that terrain below a certain altitude may be made into bodies of water
777  * in the code above - i.e. 'sea', but these are not considered 'lakes',
778  * because they are not sources of rivers).
779  *
780  * We attempt to place 'max_lakes' lakes.
781  * Each lake will be placed at a random location, if that random location meets theminimum
782  * terrain requirements for a lake. We will also attempt to source a river from each lake.
783  */
784  std::set<map_location> lake_locs;
785 
786  std::map<map_location, std::string> river_names, lake_names, road_names, bridge_names, mountain_names, forest_names, swamp_names;
787 
788  const size_t nlakes = data.max_lakes > 0 ? (rng_()%data.max_lakes) : 0;
789  for(size_t lake = 0; lake != nlakes; ++lake) {
790  for(int tries = 0; tries != 100; ++tries) {
791  const int x = rng_()%data.width;
792  const int y = rng_()%data.height;
793 
794  if(heights[x][y] <= cfg["min_lake_height"].to_int()) {
795  continue;
796  }
797 
798  std::vector<map_location> river = generate_river(heights, terrain, x, y, cfg["river_frequency"]);
799 
800  if(!river.empty() && misc_labels != nullptr) {
801  const std::string base_name = base_name_generator->generate();
802  const std::string& name = river_name_generator->generate({{"base", base_name}});
803  LOG_NG << "Named river '" << name << "'\n";
804 
805  size_t name_frequency = 20;
806  for(std::vector<map_location>::const_iterator r = river.begin(); r != river.end(); ++r) {
807  const map_location loc(r->x-data.width/3,r->y-data.height/3);
808 
809  if(((r - river.begin())%name_frequency) == name_frequency/2) {
810  misc_labels->emplace(loc, name);
811  }
812 
813  river_names.emplace(loc, base_name);
814  }
815  }
816 
817  LOG_NG << "Generating lake...\n";
818 
819  std::set<map_location> locs;
820  if(generate_lake(terrain, x, y, cfg["lake_size"], locs) && misc_labels != nullptr) {
821  bool touches_other_lake = false;
822 
823  std::string base_name = base_name_generator->generate();
824  const std::string& name = lake_name_generator->generate({{"base", base_name}});
825 
826  // Only generate a name if the lake hasn't touched any other lakes,
827  // so that we don't end up with one big lake with multiple names.
828  for(auto i : locs) {
829  if(lake_locs.count(i) != 0) {
830  touches_other_lake = true;
831 
832  // Reassign the name of this lake to be the same as the other lake
833  const map_location loc(i.x-data.width/3,i.y-data.height/3);
834  const std::map<map_location,std::string>::const_iterator other_name = lake_names.find(loc);
835  if(other_name != lake_names.end()) {
836  base_name = other_name->second;
837  }
838  }
839 
840  lake_locs.insert(i);
841  }
842 
843  if(!touches_other_lake) {
844  const map_location loc(x-data.width/3,y-data.height/3);
845  misc_labels->erase(loc);
846  misc_labels->emplace(loc, name);
847  }
848 
849  for(auto i : locs) {
850  const map_location loc(i.x-data.width/3,i.y-data.height/3);
851  lake_names.emplace(loc, base_name);
852  }
853  }
854 
855  break;
856  }
857  }
858 
859  LOG_NG << "Generated rivers. " << (SDL_GetTicks() - ticks) << " ticks elapsed" << "\n";
860  ticks = SDL_GetTicks();
861 
862  const size_t default_dimensions = 40*40*9;
863 
864  /*
865  * Convert grassland terrain to other types of flat terrain.
866  *
867  * We generate a 'temperature map' which uses the height generation
868  * algorithm to generate the temperature levels all over the map. Then we
869  * can use a combination of height and terrain to divide terrain up into
870  * more interesting types than the default.
871  */
872  const height_map temperature_map = generate_height_map(data.width,data.height,
873  cfg["temperature_iterations"].to_int() * data.width * data.height / default_dimensions,
874  cfg["temperature_size"], 0, 0);
875 
876  LOG_NG << "Generated temperature map. " << (SDL_GetTicks() - ticks) << " ticks elapsed" << "\n";
877  ticks = SDL_GetTicks();
878 
879  std::vector<terrain_converter> converters;
880  for(const config& cv : cfg.child_range("convert")) {
881  converters.emplace_back(cv);
882  }
883 
884  LOG_NG << "Created terrain converters. " << (SDL_GetTicks() - ticks) << " ticks elapsed" << "\n";
885  ticks = SDL_GetTicks();
886 
887  // Iterate over every flatland tile, and determine what type of flatland it is, based on our [convert] tags.
888  for(int x = 0; x != data.width; ++x) {
889  for(int y = 0; y != data.height; ++y) {
890  for(auto i : converters) {
891  if(i.convert_terrain(terrain[x][y],heights[x][y],temperature_map[x][y])) {
892  terrain[x][y] = i.convert_to();
893  break;
894  }
895  }
896  }
897  }
898 
899  LOG_NG << "Placing castles...\n";
900 
901  /*
902  * Attempt to place castles at random.
903  *
904  * After they are placed, we run a sanity check to make sure no two castles
905  * are closer than 'min_distance' hexes apart, and that they appear on a
906  * terrain listed in 'valid_terrain'.
907  *
908  * If not, we attempt to place them again.
909  */
910  std::vector<map_location> castles;
911  std::set<map_location> failed_locs;
912 
913  if(castle_config) {
914  /*
915  * Castle configuration tag contains a 'valid_terrain' attribute which is a
916  * list of terrains that the castle may appear on.
917  */
918  const t_translation::ter_list list = t_translation::read_list(castle_config["valid_terrain"]);
919 
920  const is_valid_terrain terrain_tester(terrain, list);
921 
922  for(int player = 0; player != data.nplayers; ++player) {
923  LOG_NG << "placing castle for " << player << "\n";
924  lg::scope_logger inner_scope_logging_object__(lg::general(), "placing castle");
925  const int min_x = data.width/3 + 3;
926  const int min_y = data.height/3 + 3;
927  const int max_x = (data.width/3)*2 - 4;
928  const int max_y = (data.height/3)*2 - 4;
929  int min_distance = castle_config["min_distance"];
930 
931  map_location best_loc;
932  int best_ranking = 0;
933  for(int x = min_x; x != max_x; ++x) {
934  for(int y = min_y; y != max_y; ++y) {
935  const map_location loc(x,y);
936  if(failed_locs.count(loc)) {
937  continue;
938  }
939 
940  const int ranking = rank_castle_location(x, y, terrain_tester, min_x, max_x, min_y, max_y, min_distance, castles, best_ranking);
941  if(ranking <= 0) {
942  failed_locs.insert(loc);
943  }
944 
945  if(ranking > best_ranking) {
946  best_ranking = ranking;
947  best_loc = loc;
948  }
949  }
950  }
951 
952  if(best_ranking == 0) {
953  ERR_NG << "No castle location found, aborting." << std::endl;
954  const std::string error = _("No valid castle location found. Too many or too few mountain hexes? (please check the 'max hill size' parameter)");
955  throw mapgen_exception(error);
956  }
957 
958  assert(std::find(castles.begin(), castles.end(), best_loc) == castles.end());
959  castles.push_back(best_loc);
960 
961  // Make sure the location can't get a second castle.
962  failed_locs.insert(best_loc);
963  }
964 
965  LOG_NG << "Placed castles. " << (SDL_GetTicks() - ticks) << " ticks elapsed" << "\n";
966  }
967  LOG_NG << "Placing roads...\n";
968  ticks = SDL_GetTicks();
969 
970  // Place roads.
971  // We select two tiles at random locations on the borders of the map
972  // and try to build roads between them.
973  int nroads = cfg["roads"];
974  if(data.link_castles) {
975  nroads += castles.size()*castles.size();
976  }
977 
978  std::set<map_location> bridges;
979 
980  road_path_calculator calc(terrain, cfg, rng_());
981  for(int road = 0; road != nroads; ++road) {
982  lg::scope_logger another_inner_scope_logging_object__(lg::general(), "creating road");
983 
984  /*
985  * We want the locations to be on the portion of the map we're actually
986  * going to use, since roads on other parts of the map won't have any
987  * influence, and doing it like this will be quicker.
988  */
989  map_location src = random_point_at_side(data.width/3 + 2,data.height/3 + 2);
990  map_location dst = random_point_at_side(data.width/3 + 2,data.height/3 + 2);
991 
992  src.x += data.width/3 - 1;
993  src.y += data.height/3 - 1;
994  dst.x += data.width/3 - 1;
995  dst.y += data.height/3 - 1;
996 
997  if(data.link_castles && road < int(castles.size() * castles.size())) {
998  const size_t src_castle = road/castles.size();
999  const size_t dst_castle = road%castles.size();
1000  if(src_castle >= dst_castle) {
1001  continue;
1002  }
1003 
1004  src = castles[src_castle];
1005  dst = castles[dst_castle];
1006  } else if(src.x == dst.x || src.y == dst.y) {
1007  // If the road isn't very interesting (on the same border), don't draw it.
1008  continue;
1009  }
1010 
1011  if(calc.cost(src, 0.0) >= 1000.0 || calc.cost(dst, 0.0) >= 1000.0) {
1012  continue;
1013  }
1014 
1015  // Search a path out for the road
1016  pathfind::plain_route rt = pathfind::a_star_search(src, dst, 10000.0, calc, data.width, data.height);
1017 
1018  const std::string& road_base_name = misc_labels != nullptr
1019  ? base_name_generator->generate()
1020  : "";
1021  const std::string& road_name = misc_labels != nullptr
1022  ? road_name_generator->generate({{"base", road_base_name}})
1023  : "";
1024  const int name_frequency = 20;
1025  int name_count = 0;
1026 
1027  bool on_bridge = false;
1028 
1029  // Draw the road.
1030  // If the search failed, rt.steps will simply be empty.
1031  for(std::vector<map_location>::const_iterator step = rt.steps.begin();
1032  step != rt.steps.end(); ++step) {
1033 
1034  const int x = step->x;
1035  const int y = step->y;
1036 
1037  if(x < 0 || y < 0 || x >= static_cast<long>(data.width) || y >= static_cast<long>(data.height)) {
1038  continue;
1039  }
1040 
1041  // Find the configuration which tells us what to convert this tile to, to make it into a road.
1042  const config& child = cfg.find_child("road_cost", "terrain", t_translation::write_terrain_code(terrain[x][y]));
1043  if(child.empty()){
1044  continue;
1045  }
1046 
1047  /* Convert to bridge means that we want to convert depending on the direction of the road.
1048  * Typically it will be in a format like convert_to_bridge = \,|,/
1049  * '|' will be used if the road is going north-south
1050  * '/' will be used if the road is going south west-north east
1051  * '\' will be used if the road is going south east-north west
1052  * The terrain will be left unchanged otherwise (if there is no clear direction).
1053  */
1054  const std::string& convert_to_bridge = child["convert_to_bridge"];
1055  if(!convert_to_bridge.empty()) {
1056  if(step == rt.steps.begin() || step+1 == rt.steps.end()) {
1057  continue;
1058  }
1059 
1060  const map_location& last = *(step-1);
1061  const map_location& next = *(step+1);
1062 
1063  map_location adj[6];
1064  get_adjacent_tiles(*step,adj);
1065 
1066  int direction = -1;
1067 
1068  // If we are going north-south
1069  if((last == adj[0] && next == adj[3]) || (last == adj[3] && next == adj[0])) {
1070  direction = 0;
1071  }
1072 
1073  // If we are going south west-north east
1074  else if((last == adj[1] && next == adj[4]) || (last == adj[4] && next == adj[1])) {
1075  direction = 1;
1076  }
1077 
1078  // If we are going south east-north west
1079  else if((last == adj[2] && next == adj[5]) || (last == adj[5] && next == adj[2])) {
1080  direction = 2;
1081  }
1082 
1083  if(misc_labels != nullptr && !on_bridge) {
1084  on_bridge = true;
1085  std::string bridge_base_name = base_name_generator->generate();
1086  const std::string& name = bridge_name_generator->generate({{"base", bridge_base_name}});
1087  const map_location loc(x - data.width / 3, y-data.height/3);
1088  misc_labels->emplace(loc, name);
1089  bridge_names.emplace(loc, bridge_base_name); //add to use for village naming
1090  bridges.insert(loc);
1091  }
1092 
1093  if(direction != -1) {
1094  const std::vector<std::string> items = utils::split(convert_to_bridge);
1095  if(size_t(direction) < items.size() && !items[direction].empty()) {
1096  terrain[x][y] = t_translation::read_terrain_code(items[direction]);
1097  }
1098 
1099  continue;
1100  }
1101  } else {
1102  on_bridge = false;
1103  }
1104 
1105  // Just a plain terrain substitution for a road
1106  const std::string& convert_to = child["convert_to"];
1107  if(!convert_to.empty()) {
1109  if(misc_labels != nullptr && terrain[x][y] != letter && name_count++ == name_frequency && !on_bridge) {
1110  misc_labels->emplace(map_location(x - data.width / 3, y - data.height / 3), road_name);
1111  name_count = 0;
1112  }
1113 
1114  terrain[x][y] = letter;
1115  if(misc_labels != nullptr) {
1116  const map_location loc(x - data.width / 3, y - data.height / 3); //add to use for village naming
1117  if(!road_base_name.empty())
1118  road_names.emplace(loc, road_base_name);
1119  }
1120  }
1121  }
1122  }
1123 
1124  // Now that road drawing is done, we can plonk down the castles.
1125  for(std::vector<map_location>::const_iterator c = castles.begin(); c != castles.end(); ++c) {
1126  if(!c->valid()) {
1127  continue;
1128  }
1129 
1130  const int x = c->x;
1131  const int y = c->y;
1132  const int player = c - castles.begin() + 1;
1133  const t_translation::coordinate coord(x, y);
1134  starting_positions.insert(t_translation::starting_positions::value_type(std::to_string(player), coord));
1135  terrain[x][y] = t_translation::HUMAN_KEEP;
1136 
1137  const int castle_array[13][2] {
1138  {-1, 0}, {-1, -1}, {0, -1}, {1, -1}, {1, 0}, {0, 1}, {-1, 1},
1139  {-2, 1}, {-2, 0}, {-2, -1}, {-1, -2}, {0, -2}, {1, -2}
1140  };
1141 
1142  for(int i = 0; i < data.castle_size - 1; i++) {
1143  terrain[x+ castle_array[i][0]][y+ castle_array[i][1]] = t_translation::HUMAN_CASTLE;
1144  }
1145 
1146  // Remove all labels under the castle tiles
1147  if(labels != nullptr) {
1148  labels->erase(map_location(x-data.width/3,y-data.height/3));
1149  for(int i = 0; i < data.castle_size - 1; i++) {
1150  labels->erase(map_location(x+ castle_array[i][0]-data.width/3, y+ castle_array[i][1]-data.height/3));
1151  }
1152  }
1153  }
1154 
1155  LOG_NG << "Placed roads. " << (SDL_GetTicks() - ticks) << " ticks elapsed" << "\n";
1156  ticks = SDL_GetTicks();
1157 
1158  /* Random naming for landforms: mountains, forests, swamps, hills
1159  * we name these now that everything else is placed (as e.g., placing
1160  * roads could split a forest)
1161  */
1162  if(misc_labels != nullptr) {
1163  for(int x = data.width / 3; x < (data.width / 3)*2; x++) {
1164  for(int y = data.height / 3; y < (data.height / 3) * 2;y++) {
1165  //check the terrain of the tile
1166  const map_location loc(x - data.width / 3, y - data.height / 3);
1167  const t_translation::terrain_code terr = terrain[x][y];
1169  std::set<std::string> used_names;
1170 
1172  //name every 15th mountain
1173  if((rng_() % 15) == 0) {
1174  for(size_t ntry = 0; ntry != 30 && (ntry == 0 || used_names.count(name) > 0); ++ntry) {
1175  base_name = base_name_generator->generate();
1176  name = mountain_name_generator->generate({{"base", base_name}});
1177  }
1178  misc_labels->emplace(loc, name);
1179  mountain_names.emplace(loc, base_name);
1180  }
1182  // If the forest tile is not named yet, name it
1183  const std::map<map_location, std::string>::const_iterator forest_name = forest_names.find(loc);
1184  if(forest_name == forest_names.end()) {
1185  for(size_t ntry = 0; ntry != 30 && (ntry == 0 || used_names.count(name) > 0); ++ntry) {
1186  base_name = base_name_generator->generate();
1187  name = forest_name_generator->generate({{"base", base_name}});
1188  }
1189  forest_names.emplace(loc, base_name);
1190  // name all connected forest tiles accordingly
1191  flood_name(loc, base_name, forest_names, t_translation::ALL_FORESTS, terrain, data.width, data.height, 0, misc_labels, name);
1192  }
1194  // If the swamp tile is not named yet, name it
1195  const std::map<map_location, std::string>::const_iterator swamp_name = swamp_names.find(loc);
1196  if(swamp_name == swamp_names.end()) {
1197  for(size_t ntry = 0; ntry != 30 && (ntry == 0 || used_names.count(name) > 0); ++ntry) {
1198  base_name = base_name_generator->generate();
1199  name = swamp_name_generator->generate({{"base", base_name}});
1200  }
1201  swamp_names.emplace(loc, base_name);
1202  // name all connected swamp tiles accordingly
1203  flood_name(loc, base_name, swamp_names, t_translation::ALL_SWAMPS, terrain, data.width, data.height, 0, misc_labels, name);
1204  }
1205  }
1206  }
1207  }
1208  }
1209 
1210  LOG_NG << "Named landforms. " << (SDL_GetTicks() - ticks) << " ticks elapsed" << "\n";
1211  LOG_NG << "Placing villages...\n";
1212  ticks = SDL_GetTicks();
1213 
1214  /*
1215  * Place villages in a 'grid', to make placing fair, but with villages
1216  * displaced from their position according to terrain and randomness, to
1217  * add some variety.
1218  */
1219  std::set<map_location> villages;
1220 
1221  if(data.nvillages > 0) {
1222 
1223  // First we work out the size of the x and y distance between villages
1224  const size_t tiles_per_village = ((data.width*data.height)/9)/data.nvillages;
1225  size_t village_x = 1, village_y = 1;
1226 
1227  // Alternate between incrementing the x and y value.
1228  // When they are high enough to equal or exceed the tiles_per_village,
1229  // then we have them to the value we want them at.
1230  while(village_x*village_y < tiles_per_village) {
1231  if(village_x < village_y) {
1232  ++village_x;
1233  } else {
1234  ++village_y;
1235  }
1236  }
1237 
1238  std::set<std::string> used_names;
1239  tcode_list_cache adj_liked_cache;
1240 
1241  config village_naming = game_config_.child("village_naming");
1242 
1243  if(cfg.has_child("village_naming")) {
1244  village_naming.append_attributes(cfg.child("village_naming"));
1245  }
1246 
1247  // If the [village_naming] child is empty, we cannot provide good names.
1248  std::map<map_location,std::string>* village_labels = village_naming.empty() ? nullptr : labels;
1249 
1250  for(int vx = 0; vx < data.width; vx += village_x) {
1251  LOG_NG << "village at " << vx << "\n";
1252 
1253  for(int vy = rng_()%village_y; vy < data.height; vy += village_y) {
1254  const size_t add = rng_()%3;
1255  const size_t x = (vx + add) - 1;
1256  const size_t y = (vy + add) - 1;
1257 
1258  const map_location res = place_village(terrain, x, y, 2, cfg, adj_liked_cache);
1259 
1260  if(res.x < static_cast<long>(data.width ) / 3 ||
1261  res.x >= static_cast<long>(data.width * 2) / 3 ||
1262  res.y < static_cast<long>(data.height ) / 3 ||
1263  res.y >= static_cast<long>(data.height * 2) / 3) {
1264  continue;
1265  }
1266 
1267  const std::string str = t_translation::write_terrain_code(terrain[res.x][res.y]);
1268 
1269  const std::string& convert_to = cfg.find_child("village", "terrain", str)["convert_to"].str();
1270  if(convert_to.empty()) {
1271  continue;
1272  }
1273 
1274  terrain[res.x][res.y] = t_translation::read_terrain_code(convert_to);
1275 
1276  villages.insert(res);
1277 
1278  if(village_labels == nullptr) {
1279  continue;
1280  }
1281 
1282  name_generator_factory village_name_generator_factory{ village_naming,
1283  {"base", "male", "village", "lake", "river", "bridge", "grassland", "forest", "hill", "mountain", "mountain_anon", "road", "swamp"} };
1284 
1285  village_naming.get_old_attribute("base_names", "male_names", "[village_naming]male_names= is deprecated, use base_names= instead");
1286  //Due to the attribute detection feature of the factory we also support male_name_generator= but keep it undocumented.
1287 
1288  base_name_generator = village_name_generator_factory.get_name_generator(
1289  (village_naming.has_attribute("base_names") || village_naming.has_attribute("base_name_generator")) ? "base" : "male" );
1290 
1291  const map_location loc(res.x-data.width/3,res.y-data.height/3);
1292 
1293  map_location adj[6];
1294  get_adjacent_tiles(loc,adj);
1295 
1296  std::string name_type = "village";
1302 
1303  size_t field_count = 0, forest_count = 0, mountain_count = 0, hill_count = 0;
1304 
1305  std::map<std::string,std::string> symbols;
1306 
1307  size_t n;
1308  for(n = 0; n != 6; ++n) {
1309  const std::map<map_location,std::string>::const_iterator road_name = road_names.find(adj[n]);
1310  if(road_name != road_names.end()) {
1311  symbols["road"] = road_name->second;
1312  name_type = "road";
1313  break;
1314  }
1315 
1316  const std::map<map_location,std::string>::const_iterator river_name = river_names.find(adj[n]);
1317  if(river_name != river_names.end()) {
1318  symbols["river"] = river_name->second;
1319  name_type = "river";
1320 
1321  const std::map<map_location,std::string>::const_iterator bridge_name = bridge_names.find(adj[n]);
1322  if(bridge_name != bridge_names.end()) {
1323  //we should always end up here, since if there is an adjacent bridge, there has to be an adjacent river too
1324  symbols["bridge"] = bridge_name->second;
1325  name_type = "river_bridge";
1326  }
1327 
1328  break;
1329  }
1330 
1331  const std::map<map_location,std::string>::const_iterator forest_name = forest_names.find(adj[n]);
1332  if(forest_name != forest_names.end()) {
1333  symbols["forest"] = forest_name->second;
1334  name_type = "forest";
1335  break;
1336  }
1337 
1338  const std::map<map_location,std::string>::const_iterator lake_name = lake_names.find(adj[n]);
1339  if(lake_name != lake_names.end()) {
1340  symbols["lake"] = lake_name->second;
1341  name_type = "lake";
1342  break;
1343  }
1344 
1345  const std::map<map_location,std::string>::const_iterator mountain_name = mountain_names.find(adj[n]);
1346  if(mountain_name != mountain_names.end()) {
1347  symbols["mountain"] = mountain_name->second;
1348  name_type = "mountain";
1349  break;
1350  }
1351 
1352  const std::map<map_location,std::string>::const_iterator swamp_name = swamp_names.find(adj[n]);
1353  if(swamp_name != swamp_names.end()) {
1354  symbols["swamp"] = swamp_name->second;
1355  name_type = "swamp";
1356  break;
1357  }
1358 
1359  const t_translation::terrain_code terr = terrain[adj[n].x+data.width/3][adj[n].y+data.height/3];
1360 
1361  if(std::count(field.begin(),field.end(),terr) > 0) {
1362  ++field_count;
1363  } else if(std::count(forest.begin(),forest.end(),terr) > 0) {
1364  ++forest_count;
1365  } else if(std::count(hill.begin(),hill.end(),terr) > 0) {
1366  ++hill_count;
1367  } else if(std::count(mountain.begin(),mountain.end(),terr) > 0) {
1368  ++mountain_count;
1369  }
1370  }
1371 
1372  if(n == 6) {
1373  if(field_count == 6) {
1374  name_type = "grassland";
1375  } else if(forest_count >= 2) {
1376  name_type = "forest";
1377  } else if(mountain_count >= 1) {
1378  name_type = "mountain_anon";
1379  } else if(hill_count >= 2) {
1380  name_type = "hill";
1381  }
1382  }
1383 
1384  std::string name;
1385 
1386  symbols["base"] = base_name_generator->generate();
1387  std::shared_ptr<name_generator> village_name_generator = village_name_generator_factory.get_name_generator(name_type);
1388 
1389  for(size_t ntry = 0; ntry != 30 && (ntry == 0 || used_names.count(name) > 0); ++ntry) {
1390  name = village_name_generator->generate(symbols);
1391  }
1392 
1393  used_names.insert(name);
1394  village_labels->emplace(loc, name);
1395  }
1396  }
1397  }
1398 
1399  LOG_NG << "Placed villages. " << (SDL_GetTicks() - ticks) << " ticks elapsed" << "\n";
1400 
1401  return output_map(terrain, starting_positions);
1402 }
config & child(config_key_type key, int n=0)
Returns the nth child with the given key, or a reference to an invalid config if there is none...
Definition: config.cpp:400
std::vector< char_t > string
void append_attributes(const config &cfg)
Adds attributes from cfg.
Definition: config.cpp:253
const terrain_code NONE_TERRAIN
Definition: translation.hpp:64
ter_list read_list(const std::string &str, const ter_layer filler)
Reads a list of terrains from a string, when reading the.
const terrain_code FOREST
config & find_child(config_key_type key, const std::string &name, const std::string &value)
Returns the first child of tag key with a name attribute containing value.
Definition: config.cpp:763
static int rank_castle_location(int x, int y, const is_valid_terrain &valid_terrain, int min_x, int max_x, int min_y, int max_y, size_t min_distance, const std::vector< map_location > &other_castles, int highest_ranking)
Add a special kind of assert to validate whether the input from WML doesn't contain any problems that...
#define ERR_NG
bool terrain_matches(const terrain_code &src, const terrain_code &dest)
Tests whether a specific terrain matches an expression, for matching rules see above.
static l_noret error(LoadState *S, const char *why)
Definition: lundump.cpp:39
#define a
void get_adjacent_tiles(const map_location &a, map_location *res)
Function which, given a location, will place all adjacent locations in res.
Definition: location.hpp:299
child_itors child_range(config_key_type key)
Definition: config.cpp:343
static const int default_border
The default border style for a map.
Definition: map.hpp:180
A terrain string which is converted to a terrain is a string with 1 or 2 layers the layers are separa...
Definition: translation.hpp:55
#define h
const std::vector< std::string > items
const terrain_code HUMAN_KEEP
bool empty() const
Definition: config.cpp:811
const terrain_code HILL
std::vector< std::string > split(const std::string &val, const char c, const int flags)
Splits a (comma-)separated string into a vector of pieces.
const ter_match ALL_MOUNTAINS("!,*^V*,!,M*")
bool generate_river_internal(const height_map &heights, terrain_map &terrain, int x, int y, std::vector< map_location > &river, std::set< map_location > &seen_locations, int river_uphill)
River generation.
static double getNoPathValue()
Definition: pathfind.hpp:63
#define b
static UNUSEDNOWARN std::string _(const char *str)
Definition: gettext.hpp:89
map_location random_point_at_side(size_t width, size_t height)
Returns a random tile at one of the borders of a map that is of the given dimensions.
const terrain_code MOUNTAIN
std::vector< map_location > steps
Definition: pathfind.hpp:134
#define VALIDATE(cond, message)
The macro to use for the validation of WML.
Structure which holds a single route between one location and another.
Definition: pathfind.hpp:131
size_t distance_between(const map_location &a, const map_location &b)
Function which gives the number of hexes between two tiles (i.e.
Definition: location.hpp:382
bool is_even(T num)
Definition: math.hpp:32
static void field(LexState *ls, struct ConsControl *cc)
Definition: lparser.cpp:702
static const ::config * terrain
The terrain used to create the cache.
Definition: minimap.cpp:133
static std::string output_map(const terrain_map &terrain, t_translation::starting_positions &starting_positions)
Function which, given the map will output it in a valid format.
log_domain & general()
Definition: log.cpp:105
std::string write_terrain_code(const terrain_code &tcode)
Writes a single terrain code to a string.
const terrain_code HUMAN_CASTLE
bool has_child(config_key_type key) const
Determine whether a config has a child or not.
Definition: config.cpp:393
Encapsulates the map of the game.
Definition: location.hpp:40
plain_route a_star_search(const map_location &src, const map_location &dst, double stop_at, const cost_calculator &calc, const size_t width, const size_t height, const teleport_map *teleports, bool border)
std::string default_generate_map(generator_data data, std::map< map_location, std::string > *labels, const config &cfg)
Generate the map.
bool has_attribute(config_key_type key) const
Definition: config.cpp:196
#define LOG_NG
static lg::log_domain log_mapgen("mapgen")
const ter_match ALL_SWAMPS("!,*^V*,*^B*,!,S*")
static void flood_name(const map_location &start, const std::string &name, std::map< map_location, std::string > &tile_names, const t_translation::ter_match &tile_types, const terrain_map &terrain, unsigned width, unsigned height, size_t label_count, std::map< map_location, std::string > *labels, const std::string &full_name)
Game configuration data as global variables.
Definition: build_info.cpp:53
EXIT_STATUS start(const config &game_conf, const std::string &filename, bool take_screenshot, const std::string &screenshot_filename)
Main interface for launching the editor from the title screen.
Definition: editor_main.cpp:28
std::string write_game_map(const ter_map &map, const starting_positions &starting_positions, coordinate border_offset)
Write a gamemap in to a vector string.
static bool is_valid_terrain(const t_translation::terrain_code &c)
#define log_scope(description)
Definition: log.hpp:186
size_t i
Definition: function.cpp:933
CURSOR_TYPE get()
Definition: cursor.cpp:194
t_translation::ter_map terrain_map
void get_tiles_radius(const map_location &center, size_t radius, std::set< map_location > &result)
Function that will add to result all locations within radius tiles of center (including center itself...
Definition: pathutils.cpp:68
const attribute_value & get_old_attribute(config_key_type key, const std::string &old_key, const std::string &msg="") const
Function to handle backward compatibility Get the value of key and if missing try old_key and log msg...
Definition: config.cpp:692
std::string base_name(const std::string &file, const bool remove_extension=false)
Returns the base filename of a file, with directory name stripped.
const terrain_code DEEP_WATER
#define next(ls)
Definition: llex.cpp:32
uint32_t next_seed()
Definition: seed_rng.cpp:45
std::vector< std::vector< int > > height_map
double t
Definition: astarsearch.cpp:64
virtual double cost(const map_location &loc, const double so_far) const =0
bool find(E event, F functor)
Tests whether an event handler is available.
Standard logging facilities (interface).
std::vector< terrain_code > ter_list
Definition: translation.hpp:83
height_map generate_height_map(size_t width, size_t height, size_t iterations, size_t hill_size, size_t island_size, size_t island_off_center)
Generate a height-map.
static const char * name(const std::vector< SDL_Joystick * > &joysticks, const size_t index)
Definition: joystick.cpp:48
const terrain_code SHALLOW_WATER
std::map< t_translation::terrain_code, t_translation::ter_list > tcode_list_cache
std::vector< game_tip > shuffle(const std::vector< game_tip > &tips)
Shuffles the tips.
Definition: tips.cpp:46
A config object defines a single node in a WML file, with access to child nodes.
Definition: config.hpp:93
mock_char c
static map_location::DIRECTION n
This module contains various pathfinding functions and utilities.
This structure can be used for matching terrain strings.
std::string::const_iterator iterator
Definition: tokenizer.hpp:24
const terrain_code GRASS_LAND
std::vector< map_location > generate_river(const height_map &heights, terrain_map &terrain, int x, int y, int river_uphill)
terrain_code read_terrain_code(const std::string &str, const ter_layer filler)
Reads a single terrain from a string.
std::vector< std::vector< int > > height_map
static map_location place_village(const t_translation::ter_map &map, const size_t x, const size_t y, const size_t radius, const config &cfg, tcode_list_cache &adj_liked_cache)
boost::bimaps::bimap< boost::bimaps::set_of< std::string >, boost::bimaps::multiset_of< coordinate >> starting_positions
const ter_match ALL_FORESTS
bool generate_lake(t_translation::ter_map &terrain, int x, int y, int lake_fall_off, std::set< map_location > &locs_touched)
Generate a lake.